亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于LSTM的溫室番茄蒸騰量預(yù)測(cè)模型研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1001903)和麗江市科技計(jì)劃項(xiàng)目(LJGZZ-2018001)


Prediction Model of Transpiration of Greenhouse Tomato Based on LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    作物蒸騰量是指導(dǎo)作物灌溉關(guān)鍵參數(shù)之一,實(shí)時(shí)獲取作物蒸騰量,實(shí)現(xiàn)按需灌溉是節(jié)約用水的有效途徑。然而,溫室內(nèi)小氣候效應(yīng)顯著,作物蒸騰與環(huán)境因子間關(guān)系較為復(fù)雜,且各環(huán)境因子之間相互關(guān)聯(lián)并呈非線(xiàn)性變化。本文以番茄作為研究對(duì)象,使用稱(chēng)量法測(cè)量作物實(shí)時(shí)蒸騰量,通過(guò)布設(shè)傳感器實(shí)時(shí)獲取溫室小氣候數(shù)據(jù),包括空氣溫度(Air temperature, AT)、相對(duì)濕度(Relative humidity, RH)、光照強(qiáng)度(Light intensity, LI)作為模型的小氣候環(huán)境輸入,冠層相對(duì)葉面積指數(shù)(Relative leaf area index,RLAI)作為模型的作物生長(zhǎng)輸入,在此基礎(chǔ)上,提出了基于長(zhǎng)短期記憶網(wǎng)絡(luò)(Long short term memory, LSTM)的番茄蒸騰量預(yù)測(cè)模型。利用該模型對(duì)番茄蒸騰量進(jìn)行預(yù)測(cè),并與非線(xiàn)性自回歸(Nonlinear autoregressive with exogeneous inputs, NARX)神經(jīng)網(wǎng)絡(luò)、Elman神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent neural network, RNN)模型進(jìn)行了對(duì)比。試驗(yàn)結(jié)果表明,LSTM預(yù)測(cè)模型決定系數(shù)(Determination coefficient, R2)與平均絕對(duì)誤差(Mean absolute error, MAE)分別為0.9925和4.53g,與NARX神經(jīng)網(wǎng)絡(luò)、Elman神經(jīng)網(wǎng)絡(luò)、RNN方法進(jìn)行對(duì)比,其決定系數(shù)分別提高了8.97%、1.18%和0.82%,其平均絕對(duì)誤差分別降低了8.16、6.23、0.52g。本研究所提的預(yù)測(cè)模型具有較高的預(yù)測(cè)精度及泛化性能,研究成果可為溫室作物需水規(guī)律及需水量研究提供參考。

    Abstract:

    Crop transpiration is one of the key parameters to guide crop irrigation. It is an effective way to save water to obtain crop transpiration in real time and realize irrigation on demand. However, the microclimate effect in greenhouse is significant, the relationship between crop transpiration and environmental factors is complex, and each environmental factor is interrelated and presents nonlinear change. Taking tomato as the research object, the weighing method was used to measure the real-time transpiration of crop. Greenhouse microclimate data could be obtained in real time through the installation of sensors, including air temperature (AT), relative humidity (RH) and light intensity (LI) as the microclimate environment input of the model, and canopy relative leaf area index (RLAI) as the crop growth input of the model. On this basis, a prediction model of tomato transpiration by long short term memory (LSTM) network was proposed. The model was used to predict the transpiration of tomato, and compared with the nonlinear autoregressive with exgeneous inputs (NARX) neural network, Elman neural network and recurrent neural network (RNN). The results showed that the determination coefficient (R2) and mean absolute error (MAE) of the LSTM prediction model were 0.9925 and 4.53g,respectively. Compared with NARX, Elman neural network and RNN, their R2 were increased by 8.97%, 1.18% and 0.82%, respectively, and their MAE were decreased by 8.16g, 6.23g and 0.52g, respectively. The prediction model proposed had high prediction accuracy and generalization performance, and the research results could provide reference for the study on the regularity and water demand of greenhouse crops.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李莉,李文軍,馬德新,楊成飛,孟繁佳.基于LSTM的溫室番茄蒸騰量預(yù)測(cè)模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(10):369-376. LI Li, LI Wenjun, MA Dexin, YANG Chengfei, MENG Fanjia. Prediction Model of Transpiration of Greenhouse Tomato Based on LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):369-376.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-06
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2021-01-06
  • 出版日期:
文章二維碼