亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

融合棧式自編碼與CNN的高光譜影像作物分類方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(62071350)、陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020GY-162)和國家對地觀測科學(xué)數(shù)據(jù)中心開放基金項(xiàng)目(NODAOP2021013)


Innovative Method of Crop Classification for Hyperspectral Images Combining Stacked Autoencoder and CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在高光譜影像作物分類中,為了充分利用高光譜遙感影像完整的光譜信息,同時(shí)避免高維數(shù)據(jù)帶來的Hughes現(xiàn)象,本文從棧式自編碼網(wǎng)絡(luò)的數(shù)據(jù)降維與CNN網(wǎng)絡(luò)的分類優(yōu)勢出發(fā),首先分析了此種網(wǎng)絡(luò)在訓(xùn)練過程中的共性,以自編碼網(wǎng)絡(luò)優(yōu)化過程中分類器的選取作為切入點(diǎn),構(gòu)建了可用于高光譜影像分類的融合網(wǎng)絡(luò)架構(gòu)。相較于傳統(tǒng)方法,本文方法僅通過一次監(jiān)督訓(xùn)練,即可實(shí)現(xiàn)高光譜影像直接分類,簡化了傳統(tǒng)數(shù)據(jù)處理流程,而且具有更優(yōu)的分類性能。在實(shí)驗(yàn)中,利用Pavia University與雄安地區(qū)兩組典型的高光譜遙感影像數(shù)據(jù)集對本文方法進(jìn)行了驗(yàn)證,實(shí)驗(yàn)結(jié)果表明,Pavia University數(shù)據(jù)集中,在僅選用10%的像素點(diǎn)作為訓(xùn)練集的情況下,本文方法總體分類精度達(dá)到98.73%,比傳統(tǒng)方法提升了8個(gè)百分點(diǎn)以上;在雄安數(shù)據(jù)集中,在僅選用1%的像素點(diǎn)作為訓(xùn)練集的情況下,本文方法總體分類精度達(dá)到98.04%,比傳統(tǒng)方法提升了7個(gè)百分點(diǎn)以上,證明了本文分析的正確性和所提方法有效性,也為小樣本情況下的高光譜影像分類提供了一種新的研究思路。

    Abstract:

    In crop classification with hyperspectral images, in order to make full use of the complete spectral information of hyperspectral remote sensing images and avoid the Hughes phenomenon caused by high-dimensional data, traditional methods usually adopt the strategy of “feature reduction first, and then classification”. Starting from the data dimensionality reduction of the autoencoder and the classification advantages of CNN network, the commonalities of the two networks in the training process was firstly analyzed, and a fusion network for hyperspectral image classification was constructed based on the selection of classifiers in the optimization process of the autoencoder. Compared with the traditional methods, this method can realize the direct classification of hyperspectral images through once supervision training, which simplified the traditional data processing process and had better classification performances. In the experiment, two sets of typical hyperspectral remote sensing image data sets from Pavia University and Xiong'an area were used to verify the method. The experimental results showed that in Pavia University dataset, when only 10% of pixels were selected as the training set, the overall classification accuracy of the proposed method reached 98.73%, which was more than 8 percentage points higher than those of the traditional method. In Xiong'an dataset, when only 1% of pixels were selected as the training set, the overall classification accuracy of this method reached 98.04%, which was more than 7 percentage points higher than those of the traditional method, which proved the correctness of this analysis and the effectiveness of the proposed method, and also provided a strategy for hyperspectral image classification with small training samples.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郭交,李儀邦,董思意,張偉濤.融合棧式自編碼與CNN的高光譜影像作物分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(12):225-232. GUO Jiao, LI Yibang, DONG Siyi, ZHANG Weitao. Innovative Method of Crop Classification for Hyperspectral Images Combining Stacked Autoencoder and CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(12):225-232.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-14
  • 出版日期:
文章二維碼