亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于知識圖譜的Android端農技智能問答系統(tǒng)研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61601471)


Design of Agricultural Question Answering System Based on Knowledge Graph
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前普及程度較高的以電話直接咨詢、集中技術培訓和專家現(xiàn)場指導為主的農業(yè)信息服務,受時空和人力限制,存在及時性和便捷性欠缺的問題,研究開發(fā)Android端農技智能問答機器人APP,為農民提供信息服務。利用爬蟲工具采集互聯(lián)網平臺上的海量農技問答數(shù)據(jù),經過預處理后形成語料。對語料特征進行自動標注后訓練CRF模型識別農技命名實體。并根據(jù)詞頻和信息熵計算命名實體的評價指數(shù),構建“農作物-病蟲害-農藥”三元組知識庫。將知識庫導入Neo4j建立農技知識圖譜。在Android端集成命名實體識別和知識圖譜查詢推薦算法,解決用戶問題的關鍵詞識別和查詢結果的擇優(yōu)推薦問題。所設計問答系統(tǒng)為農技問答提供了一種智能解決方案,具有較高的自動化程度和應用價值。

    Abstract:

    At present, the popular agricultural information services are mainly telephone direct consultation, centralized technical training and expert on-site guidance in China. Due to the limitation of time and space and manpower, there is a lack of timeliness and convenience. Through the research and development of Android agricultural technology intelligent question answering robot APP, agricultural information service can be provided for farmers. Crawlers were used to collect a large number of agricultural technology Q&A data on Internet platforms, which were preprocessed to form a corpus. The CRF model was trained to recognize the agricultural technology named entity after automatically labeling the corpus features. According to word frequency and information entropy, the evaluation index of named entity was calculated to construct the triple knowledge base of “crops, pests and pesticides”. The knowledge base was imported into Neo4j to establish the agricultural technology knowledge map. The algorithm of named entity recognition and knowledge map query recommendation was integrated in Android to solve the problem of keyword recognition and query result recommendation. This question answering system can provide a intelligent solution for agricultural technology Q&A, which had a high degree of automation and application value.

    參考文獻
    相似文獻
    引證文獻
引用本文

張博凱,李 想.基于知識圖譜的Android端農技智能問答系統(tǒng)研究[J].農業(yè)機械學報,2021,52(S0):164-171. ZHANG Bokai, LI Xiang. Design of Agricultural Question Answering System Based on Knowledge Graph[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):164-171.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10