亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于注意力池化和堆疊式結(jié)構(gòu)的病蟲害文獻(xiàn)識別模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300710)


Diseases and Pests Articles Identification Model Based on Attention Pooling and Stacked Structure
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決病蟲害文獻(xiàn)識別過程中存在語義特征學(xué)習(xí)不夠、上下文信息不能充分利用等問題,以病蟲害相關(guān)文獻(xiàn)摘要為研究對象,提出一種基于注意力池化策略和堆疊式雙向長短期記憶(Bi-directional long-short term memory, BiLSTM)的神經(jīng)網(wǎng)絡(luò)模型(AP-LSTM)。該模型采用堆疊式長短期記憶結(jié)構(gòu),提高了對語義特征的學(xué)習(xí)能力,在進(jìn)行堆疊操作時(shí),通過將輸入向量與輸出向量拼接,進(jìn)一步加強(qiáng)了對語義信息的表征;然后采用基于注意力機(jī)制的池化策略為不同的詞分配不同權(quán)重,使模型在抓住重點(diǎn)的同時(shí)能夠充分利用上下文信息。本文在包含1439條正例、1061條負(fù)例的自標(biāo)注數(shù)據(jù)集上進(jìn)行了實(shí)驗(yàn),所提出的AP-LSTM模型在該數(shù)據(jù)集上的精確率、召回率、〖JP2〗F1值和準(zhǔn)確率分別為92.67%、97.20%、94.88%和94.00%,實(shí)驗(yàn)結(jié)果表明,AP-LSTM模型能夠有效識別病蟲害文獻(xiàn)。

    Abstract:

    Diseases and pests articles identification is an important pre-task of natural language processing in the field of diseases and pests. It is of great significance to develop a fast and accurate method for diseases and pests articles identification. In order to solve the problems of insufficient learning of semantic features and insufficient use of context information in the process of diseases and pests articles identification, a neural network model of attention pooling based bi-directional long-short term memory (AP-LSTM) was proposed, which was based on attention pooling strategy and bi-directional long-short term memory (BiLSTM). The model adopted the stacked LSTM structure, which improved the learning ability of semantic features. In the stacking operation, the input vector and output vector were concatenated to further enhance the representation of semantic information. Then, a pooling strategy based on the attention mechanism was used to assign different weights to different words, so that the model can make full use of context information while grasping the keywords. The experiments were carried out on a self annotated dataset with 2500 labeled samples, including 1439 positive cases and 1061 negative cases. The precision, recall, F1 score, and accuracy of the proposed AP-LSTM model on the dataset were 92.67%, 97.20%, 94.88%, and 94.00%, respectively. The experimental results showed that the proposed AP-LSTM model can effectively identify pest literature.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

唐 詹,柏 召,刁 磊,郭旭超,周 晗,李 林.基于注意力池化和堆疊式結(jié)構(gòu)的病蟲害文獻(xiàn)識別模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S0):178-184. TANG Zhan, BAI Zhao, DIAO Lei, GUO Xuchao, ZHOU Han, LI Lin. Diseases and Pests Articles Identification Model Based on Attention Pooling and Stacked Structure[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):178-184.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10