亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于DRN-Faster R-CNN的復(fù)雜背景多目標(biāo)魚體檢測模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點(diǎn)研發(fā)計劃項目(2020YFD0900201)


Multi-target Fish Detection Model Based on DRN-Faster R-CNN in Complex Background
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現(xiàn)有多目標(biāo)魚體檢測大多針對受控環(huán)境進(jìn)行,泛化能力有限的問題,提出了一種簡單、有效的復(fù)雜背景下多目標(biāo)魚體檢測模型。通過遷移學(xué)習(xí)構(gòu)建基于DRN的特征提取方法,對原始圖像進(jìn)行特征提取,結(jié)合RPN進(jìn)一步生成候選檢測框;構(gòu)建基于Faster R-CNN的復(fù)雜背景多目標(biāo)魚體檢測模型。在ImageNet2012數(shù)據(jù)集上的實(shí)驗結(jié)果表明:該模型對復(fù)雜背景下金魚的檢測平均精度達(dá)到89.5%,遠(yuǎn)高于R-CNN+AlexNet模型、Faster R-CNN+VGG16模型和Faster R-CNN+ResNet101的檢測精度,表明該模型可以高效精確地實(shí)現(xiàn)復(fù)雜背景下的多目標(biāo)魚體檢測。

    Abstract:

    Target detection is the key link of fish tracking, behavior recognition and abnormal behavior detection of fish body. Therefore, fish detection has important practical significance. Due to the low imaging quality of underwater surveillance video, the complicated underwater environment, and the high visual diversity of fish bodies, multi-target fish detection in complex background is still a very challenging problem. In order to solve the problem that the existing multi-target fish detection is mostly carried out in a controlled environment and the generalization ability is limited, a simple and effective multi-target fish detection model in complex background was proposed. The feature extraction method based on DRN was constructed by transfer learning. The features were extracted from the original image, and the candidate detection frame was further generated by combining RPN. A multi-target fish detection model in complex background was constructed based on Faster R-CNN. The experimental results on the ImageNet2012 data set showed that the detection accuracy of this model for goldfish in complex background reached 89.5%, which was much higher than the detection accuracy of the R-CNN+AlexNet model, Faster R-CNN+VGG16 model and Faster R-CNN+ ResNet101 model in this data set, indicating that this model can effectively and accurately realize the detection of multi-target fish in complex background.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫龍清,孫希蓓,吳雨寒,羅 冰.基于DRN-Faster R-CNN的復(fù)雜背景多目標(biāo)魚體檢測模型[J].農(nóng)業(yè)機(jī)械學(xué)報,2021,52(S0):245-251,315. SUN Longqing, SUN Xibei, WU Yuhan, LUO Bing. Multi-target Fish Detection Model Based on DRN-Faster R-CNN in Complex Background[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):245-251,315.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10