亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于IBAS和LSTM網(wǎng)絡(luò)的池塘水溶解氧含量預(yù)測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2020YFD0900201)


Dissolved Oxygen Prediction Model in Ponds Based on Improved Beetle Antennae Search and LSTM Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高池塘水體中溶解氧含量(DO)預(yù)測精度,本文提出了一種基于改進的天牛須搜索算法(Improved beetle antennae search algorithm, IBAS)和長短期記憶網(wǎng)絡(luò)(Long short-term memory, LSTM)相結(jié)合的溶解氧含量預(yù)測模型。為了降低模型輸入維度,提高模型計算效率,采用皮爾遜(Pearson)相關(guān)系數(shù)分析法得出各因子與溶解氧含量之間的相關(guān)性,提取強關(guān)聯(lián)因子作為模型輸入特征;為了使天牛須搜索算法(Beetle antennae search algorithm, BAS)在全局搜索和局部搜索中達到平衡,提高算法的收斂速度,提出衰減因子指數(shù)遞減策略改進天牛須搜索算法,將衰減因子γ與迭代次數(shù)相聯(lián)系并呈指數(shù)函數(shù)遞減;通過IBAS優(yōu)化LSTM網(wǎng)絡(luò),得到最優(yōu)參數(shù)組合策略,建立P-IBAS-LSTM非線性溶解氧含量預(yù)測模型。并利用該模型對江蘇省宜興市水產(chǎn)養(yǎng)殖研究中心某池塘水體溶解氧含量進行驗證,預(yù)測2h后的溶解氧含量。在與常見的7種模型對比中發(fā)現(xiàn),本文所提出的方法在各項指標中都取得了最優(yōu)的性能,均方誤差(MSE)為0.6442mg2/L2、均方根誤差(RMSE)為0.8026mg/L、平均絕對誤差(MAE)為0.5306mg/L。實驗結(jié)果表明本文所提出的模型預(yù)測精度更高,泛化性能更強,可以滿足實際對溶解氧含量準確預(yù)測的需求,并為池塘養(yǎng)殖中水質(zhì)預(yù)警控制提供參考。

    Abstract:

    To improve the prediction accuracy of dissolved oxygen content in ponds, a novel long short-term memory (LSTM) optimized by an improved beetle antennae search algorithm (IBAS) was proposed. Firstly, Pearson correlation coefficient was used to obtain the linear correlation between each factor and dissolved oxygen. The key impact factors of dissolved oxygen were selected by Pearson correlation coefficient as the input feature, which can reduce the input dimension, eliminate the correlations of original variable, and improve the calculation efficiency of the model. Secondly, to balance the global search and local search, and improve the convergence speed of beetle antennae search algorithm (BAS), an IBAS with exponential decreasing strategy of attenuation factor was proposed, which linked the attenuation factor eta with the number of iterations. Finally, LSTM network was optimized by IBAS to get the best parameter combination strategy to construct a P-IBAS-LSTM prediction model between dissolved oxygen and these factors. Based on the presented model, the dissolved oxygen was predicted for an experimental pond during April 28 th to September 8 th, 2020 in the Research Center of Yixing City, Jiangsu Province. In the case of the same data, the mean squared error (MSE), root mean square error (RMSE), and the average absolute error (MAE) of the P-IBAS-LSTM were 0.6442mg2/L2, 0.8026mg/L, 0.5306mg/L, respectively. The experimental results showed that the proposed model of P-IBAS-LSTM had higher performance and stronger generalization performance when compared with common prediction models, which could meet the actual needs of predicting dissolved oxygen accurately and help farmers make decisions in ponds.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫龍清,吳雨寒,孫希蓓,張 松.基于IBAS和LSTM網(wǎng)絡(luò)的池塘水溶解氧含量預(yù)測[J].農(nóng)業(yè)機械學(xué)報,2021,52(S0):252-260. SUN Longqing, WU Yuhan, SUN Xibei, ZHANG Song. Dissolved Oxygen Prediction Model in Ponds Based on Improved Beetle Antennae Search and LSTM Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):252-260.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10