亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于IGWO算法的冬小麥作物-土壤全氮含量一體化監(jiān)測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41801245)、廣西創(chuàng)新驅(qū)動發(fā)展專項(xiàng)資金項(xiàng)目(桂科AA18118037-3)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2021AC026)


Integrated Monitoring of Total Nitrogen Content in Winter Wheat Crop-Soil Based on Improved Grey Wolf Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為對冬小麥作物-土壤全氮含量進(jìn)行一體化監(jiān)測,提出一種基于改進(jìn)灰狼優(yōu)化算法(Improved grey wolf optimization algorithm,IGWO)的冬小麥作物-土壤全氮含量共同冠層高光譜特征波長選擇方法。以河南省漯河市郾城區(qū)的40塊拔節(jié)期冬小麥農(nóng)田為研究區(qū),通過采集冬小麥冠層反射光譜,結(jié)合實(shí)驗(yàn)室測定精確全氮含量,利用IGWO算法選擇冬小麥作物-土壤共同特征波長。結(jié)果表明,相較于遺傳算法(Genetic algorithm,GA)等其他仿生學(xué)優(yōu)化算法,改進(jìn)灰狼優(yōu)化算法可以選擇冬小麥作物-土壤共同冠層反射光譜特征波長。在隨機(jī)森林(Random forest,RF)回歸模型下,冬小麥作物和土壤全氮含量測試集的決定系數(shù)(Coefficient of determination,R 2)分別為0.7888和0.7534。與其他仿生學(xué)算法相比,IGWO選擇的特征波長405、495、582、731、808nm預(yù)測性能最佳,能夠有效利用全譜信息且符合冬小麥生理特征。改進(jìn)灰狼優(yōu)化算法能夠選擇冬小麥作物-土壤共同的冠層反射光譜特征波長,實(shí)現(xiàn)對冬小麥作物-土壤全氮含量的較高精度估計(jì),可作為估測田間冬小麥作物-土壤全氮含量的有效途徑。

    Abstract:

    In order to realize the integrated monitoring of winter wheat crop-soil total nitrogen content, a winter wheat crop-soil common canopy hyperspectral feature wavelength selection method was proposed based on improved grey wolf optimization algorithm (IGWO). Totally 40 winter wheat fields at nodulation stage in Luohe City, Henan Province were used as the study area, and the improved grey wolf algorithm was used to select the winter wheat common crop-soil feature wavelengths by collecting wheat canopy reflectance spectra and combining with precise total nitrogen values measured in the laboratory. The results showed that the improved grey wolf optimization algorithm can select the common winter wheat crop-soil canopy reflectance spectra feature wavelengths compared with other bionomics optimization algorithms such as genetic algorithm (GA). Under the random forest (RF) regression model, the coefficients of determination (R 2) of the crop and soil test sets were 0.7888 and 0.7534, respectively. Compared with other bionomics algorithms, the IGWO selected the feature wavelengths of 405nm, 495nm, 582nm, 731nm and 808nm had the best prediction performance, these feature wavelengths can effectively use the full spectrum information and meet the physiological characteristics of winter wheat. The improved grey wolf optimization algorithm proposed can select the feature wavelengths of winter wheat crop-soil common canopy reflectance spectra to achieve a higher accuracy estimation of winter wheat crop-soil total nitrogen which can be an effective way to estimate winter wheat crop-soil total nitrogen content in the field.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

田澤眾,張 瑤,張海洋,孫 紅,李民贊.基于IGWO算法的冬小麥作物-土壤全氮含量一體化監(jiān)測[J].農(nóng)業(yè)機(jī)械學(xué)報,2021,52(S0):304-309,359. TIAN Zezhong, ZHANG Yao, ZHANG Haiyang, SUN Hong, LI Minzan. Integrated Monitoring of Total Nitrogen Content in Winter Wheat Crop-Soil Based on Improved Grey Wolf Optimization Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):304-309,359.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10