亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于樹莓派的農(nóng)田表土層土壤容重檢測系統(tǒng)研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金青年基金項目(31801265)


Soil Bulk Density Detection System of Farmland Topsoil Based on Raspberry Pi
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    設(shè)計了一種基于樹莓派的表層土壤容重檢測系統(tǒng),利用易于獲取的土壤表面圖像特征對表層土壤容重進(jìn)行預(yù)測。提取圖像的Tamura紋理特征以及圖像的分形維數(shù)特征。經(jīng)過驗證,Tamura 紋理特征中的粗糙度、對比度、方向度以及圖像分形維數(shù)特征與土壤容重的相關(guān)性較高,相關(guān)系數(shù)分別為-0.754、-0.799、-0.806、-0.849,因而選用這4個參數(shù)作為預(yù)測模型輸入。分別采用SVM回歸模型和GRNN回歸模型以及基于SVM、GRNN的Bagging集成模型對土壤容重進(jìn)行預(yù)測?;赟VM、GRNN的Bagging集成模型預(yù)測結(jié)果同環(huán)刀法得到的結(jié)果進(jìn)行相關(guān)性分析,決定系數(shù)R 2達(dá)到0.8641,預(yù)測結(jié)果的平均絕對誤差(MAE)達(dá)到了0.0316g/cm 3,相對單一SVM回歸模型和單一GRNN回歸模型具有更好的預(yù)測結(jié)果?;跇漭傻霓r(nóng)田表土層土壤容重檢測系統(tǒng)的田間實時測量結(jié)果顯示測量的平均絕對誤差(MAE)為0.0412g/cm 3,滿足了田間精準(zhǔn)、快速檢測的要求。

    Abstract:

    The soil bulk density of the topsoil layer is an important parameter of farmland soil, and it is of great significance to accurately measure and evaluate it. A vehicle-mounted surface soil bulk density detection system based on Raspberry Pi was designed. The system took soil surface images and predicted the surface soil bulk density using easily-obtained soil surface image features. Extracted the Tamura texture feature of the image and the fractal dimension feature of the image. After verification, the roughness, contrast, directionality, and fractal dimension features were highly correlated with soil bulk density, and the correlation coefficients were -0.754, -0.799, -0.806, and -0.849. So these four parameters were selected as the input of the prediction model. SVM regression model, GRNN regression model and Bagging integration model based on SVM and GRNN were used to predict soil bulk density. Based on the correlation analysis between the prediction results of the Bagging integration model of SVM and GRNN and the results obtained by the ring knife method, R 2 reached 0.8641, and the average absolute error (MAE) of the prediction results reached 0.0316g/cm 3, and it had better prediction results than a single SVM regression model and a single GRNN regression model. The field test was carried out using the soil bulk density detection system of farmland topsoil based on Raspberry Pi. And the results showed that the average absolute error (MAE) of the measurement was 0.0412g/cm 3, which was in line with expectations and met the requirements of accurate and rapid detection.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李民贊,任新建,楊 瑋,孟 超,王煒超.基于樹莓派的農(nóng)田表土層土壤容重檢測系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2021,52(S0):329-335,376. LI Minzan, REN Xinjian, YANG Wei, MENG Chao, WANG Weichao. Soil Bulk Density Detection System of Farmland Topsoil Based on Raspberry Pi[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):329-335,376.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10