亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于LSTM-Seq2Seq的兔舍環(huán)境多參數(shù)預(yù)測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目


Multivariable Environmental Prediction Model of Rabbit House Based on LSTM-Seq2Seq
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決傳統(tǒng)兔舍環(huán)境參數(shù)預(yù)測(cè)方法忽略環(huán)境參數(shù)間耦合關(guān)系的問(wèn)題,提出了基于LSTM的Seq2Seq兔舍環(huán)境多參數(shù)關(guān)聯(lián)序列預(yù)測(cè)模型。在建模過(guò)程中,使用雙層LSTM作為Seq2Seq結(jié)構(gòu)的編碼器和解碼器,以提高環(huán)境參數(shù)預(yù)測(cè)模型的表征能力及預(yù)測(cè)精度,而Seq2Seq結(jié)構(gòu)不僅能夠有效提取兔舍環(huán)境參數(shù)序列自身時(shí)間相關(guān)性,還能夠挖掘參數(shù)間的耦合關(guān)系。利用該模型對(duì)浙江省嵊州市某兔場(chǎng)兔舍環(huán)境數(shù)據(jù)進(jìn)行實(shí)驗(yàn)及預(yù)測(cè)。結(jié)果顯示,該兔舍環(huán)境多參數(shù)預(yù)測(cè)模型取得了良好的預(yù)測(cè)性能,分別與標(biāo)準(zhǔn)LSTM、標(biāo)準(zhǔn)SVR模型對(duì)比分析,溫度預(yù)測(cè)精度分別提高28.41%和48.60%,相對(duì)濕度預(yù)測(cè)精度分別提高9.84%和56.08%,二氧化碳濃度預(yù)測(cè)精度分別提高5.39%和11.19%。表明所提出的兔舍環(huán)境多參數(shù)預(yù)測(cè)模型能夠充分挖掘關(guān)聯(lián)環(huán)境參數(shù)序列間的耦合關(guān)系,滿足兔舍環(huán)境數(shù)據(jù)精準(zhǔn)預(yù)測(cè)的需要。

    Abstract:

    In order to improve the prediction accuracy of the rabbit house environment parameters, solve the coupling relationship between environmental parameters ignored in traditional predict method, and reduce the cost of rabbit house environmental control, a multivariable environmental prediction sequence to sequence model of rabbit house based on Long Short-Term Memory was proposed. Double-layer LSTM was used as the encoder and decoder of the Seq2Seq structure to improve the characterization ability and prediction accuracy of the environmental parameter prediction model. The Seq2Seq structure can not only effectively extract the time correlation of the rabbit house environmental parameter sequence itself, but also can mine the coupling relationship between the parameters. The model was used to test and predict the data of temperature, humidity and carbon dioxide concentration in the rabbit house which in a rabbit farm in Shengzhou City, Zhejiang Province. The results showed that the multi-parameter prediction model of the rabbit house environment achieved good prediction performance. Compared with standard LSTM model and standard SVM model, the prediction accuracy of temperature is improved by 28.41% and 48.60%, the prediction accuracy of humidity is improved by 9.84% and 56.08%, and the prediction accuracy of carbon dioxide concentration is improved by 5.39% and 11.19%. The experimental results showed that the proposed multivariable environmental prediction model of rabbit house not only had good forecasting effect, but also can meet the needs of accurate of prediction of rabbit house environmental data.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

冀榮華,史珊弋,趙迎迎,劉中英,吳中紅.基于LSTM-Seq2Seq的兔舍環(huán)境多參數(shù)預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S0):396-401. JI Ronghua, SHI Shanyi, ZHAO Yingying, LIU Zhongying, WU Zhonghong. Multivariable Environmental Prediction Model of Rabbit House Based on LSTM-Seq2Seq[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):396-401.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10