亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于CS-CatBoost的溫室番茄水分脅迫預(yù)測(cè)模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1001903)和中央高校基本科研業(yè)務(wù)費(fèi)項(xiàng)目(2021TC031)


Crop Water Stress Index Prediction Model of Greenhouse Tomato Based on CS-CatBoost
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為預(yù)測(cè)溫室番茄水分脅迫程度,利用傳感器獲取溫室內(nèi)部環(huán)境信息,包括空氣溫度(Ta)、空氣相對(duì)濕度(Rh)、基質(zhì)濕度(Hs)、光照強(qiáng)度(Li)、二氧化碳濃度(CO2)和基質(zhì)溫度(Ts),通過(guò)氣象站獲取溫室外部環(huán)境信息,包括風(fēng)速(Ws)、室外相對(duì)濕度(Rho)和室外空氣溫度(Tao)。根據(jù)以上9個(gè)參數(shù)建立基于布谷鳥(niǎo)搜索優(yōu)化CatBoost(CS-CatBoost)的溫室番茄水分脅迫指數(shù)(CWSI)預(yù)測(cè)模型。通過(guò)梯度提升算法計(jì)算特征權(quán)重并進(jìn)行篩選,對(duì)比不同輸入特征數(shù)量下CS-CatBoost算法的性能。同時(shí),與原CatBoost模型、CS-LightGBM模型和CS-RF模型進(jìn)行對(duì)比分析。結(jié)果表明,當(dāng)模型的輸入?yún)?shù)數(shù)量為7時(shí),CS-CatBoost與CatBoost、CS-LightGBM、CS-RF相比,RMSE降低了0.0123、0.0118和0.0311,MAE下降了0.0066、0.0075和0.0208,MAPE下降了0.963、1.1232和3.0892,R 2則提高了0.0177、0.0165和0.0767。在模型輸入?yún)?shù)數(shù)量為其他值時(shí),CS-CatBoost模型的預(yù)測(cè)能力均優(yōu)于其他3種模型。該研究證明了CS-CatBoost模型擁有較好的預(yù)測(cè)能力與泛化能力,可為溫室番茄種植的水分脅迫程度分析提供一種新的策略,從而提高農(nóng)業(yè)水資源的利用效率。

    Abstract:

    In order to predict the degree of water stress of tomato in greenhouse, sensors were used to obtain the internal environmental information of greenhouse, including air temperature (Ta), air relative humidity (Rh), substrate humidity (Hs), light intensity (Li), carbon dioxide concentration (CO2) and substrate temperature (Ts). The wind speed (Ws), outdoor relative humidity (Rho) and outdoor air temperature (Tao) of the greenhouse were obtained from local weather station. According to the above nine parameters, the crop water stress index (CWSI) prediction model of greenhouse tomato was established based on CS-CatBoost. The feature weights were calculated and screened by the gradient lifting algorithm. The performance of the CS-CatBoost algorithm under different input feature numbers was compared with the original CatBoost model, CS-LightGBM model and CS-RF model. The results showed that when the number of input parameters of the model was 7, compared with CatBoost, CS-LightGBM and CS-RF, the RMSE was decreased by 0.0123, 0.0118 and 0.0311, MAE was decreased by 0.0066, 0.0075 and 0.0208, MAPE was decreased by 0.9630, 1.1232 and 3.0892, while R 2 was increased by 0.0177, 0.0165 and 0.0767. When the number of other parameters as the model input, CS-CatBoost models prediction ability was superior to the other three model. The research result proved that the CS-CatBoost model had better prediction ability and generalization ability, which provided a strategy for water stress degree analysis of greenhouse tomato cultivation, thereby improving the utilization efficiency of agricultural water resources.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李 莉,陳浩哲,趙奇慧,馬德新,孟繁佳.基于CS-CatBoost的溫室番茄水分脅迫預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S0):427-433. LI Li, CHEN Haozhe, ZHAO Qihui, MA Dexin, MENG Fanjia. Crop Water Stress Index Prediction Model of Greenhouse Tomato Based on CS-CatBoost[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):427-433.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10