亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜成像和深度學習的山核桃內(nèi)源性異物檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFC1600805)


Inspection of Endogenous Foreign Body in Chinese Hickorynut Based on Hyperspectral Imaging and Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    山核桃殼是山核桃加工生產(chǎn)中的內(nèi)源性異物,其顏色與果仁差異性較小,難以通過顏色進行準確識別。針對此問題,提出了一種基于高光譜成像和深度學習的山核桃內(nèi)源性異物檢測方法。以山核桃為研究對象,根據(jù)山核桃的組成和結(jié)構(gòu)特征,將山核桃分為內(nèi)仁、外仁、內(nèi)殼和外殼4種組分,使用高光譜成像技術(shù)獲取了各組分的高光譜圖像,依次通過大津法、形態(tài)學算法和邏輯與運算對高光譜圖像進行了背景分割,提取了山核桃各組分像素點的光譜,并利用多元散射校正對各組分光譜進行了預處理?;谝痪S神經(jīng)網(wǎng)絡(1DCNN),提取各組分光譜的深度特征,建立山核桃內(nèi)源性異物的1DCNN檢測模型。為了提高檢測模型的性能,將歸一化的各組分光譜轉(zhuǎn)化為二維向量,作為二維卷積神經(jīng)網(wǎng)絡(2DCNN)的輸入,建立2DCNN山核桃內(nèi)源性異物的檢測模型,模型的性能優(yōu)于所建立的1DCNN模型,將訓練集和測試集的分類正確率分別提高到100%和98.5%。

    Abstract:

    Chinese hickory shell is the endogenous foreign body in its kernel production. Since the shell and kernel is similar in color, it is difficult to distinguish the shell and kernel accurately by color. In order to solve this problem, a nondestructive method based on hyperspectral imaging and deep learning for detecting endogenous foreign body in Chinese hickory nut was proposed. According to composition and structure of hickory nut, all samples can be divided into the inner shell, outer shell, inner kernel and outer kernel groups. After the hyperspectral images of each group was collected, the background of each hyperspectral image was removed by the Otsu method morphological algorithm and logical ‘a(chǎn)nd’ operation. The spectra of pixels in each group were extracted and preprocessed by multiplicative scatter correction (MSC) method. The deep features of the spectra were extracted by one dimension convolutional neural networks (1DCNN) and an 1DCNN model was established for detection of endogenous foreign body in hickory nut. To improve the detection accuracy, the spectra of pixels were normalized and reshaped into two-dimensional vector as the input of two dimension convolutional neural networks (2DCNN). The performance of the proposed 2DCNN model was better than that of the 1DCNN model. The accuracies of 100% and 98.5% were achieved for the training set and testing set, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

馮 喆,李衛(wèi)豪,崔 笛.基于高光譜成像和深度學習的山核桃內(nèi)源性異物檢測[J].農(nóng)業(yè)機械學報,2021,52(S0):466-471. FENG Zhe, LI Weihao, CUI Di. Inspection of Endogenous Foreign Body in Chinese Hickorynut Based on Hyperspectral Imaging and Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):466-471.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10