亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多條件時(shí)間序列的免耕播種機(jī)作業(yè)數(shù)據(jù)清洗方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0700305)和兵團(tuán)重大科技項(xiàng)目(2018AA00404)


Data Cleaning Method of No-tillage Seeder Monitoring Data Based on Multi-conditional Time Series
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高作業(yè)監(jiān)測(cè)數(shù)據(jù)狀態(tài)預(yù)測(cè)精度,并保證無效數(shù)據(jù)的實(shí)時(shí)清洗,提高數(shù)據(jù)質(zhì)量并降低監(jiān)測(cè)設(shè)備的緩存壓力,從而降低對(duì)后續(xù)地塊作業(yè)質(zhì)量評(píng)價(jià)準(zhǔn)確性的影響,減輕數(shù)據(jù)并發(fā)帶來的網(wǎng)絡(luò)壓力,本文針對(duì)免耕播種機(jī)長(zhǎng)時(shí)序的田間周期性作業(yè)規(guī)律,提出基于多條件時(shí)間序列分析的監(jiān)測(cè)數(shù)據(jù)清洗方法及模型,該模型包含3個(gè)長(zhǎng)短時(shí)記憶特征提取模塊,分別提取了工況參數(shù)中車速、瞬時(shí)面積和播種量的時(shí)空特征,再利用通道融合(CONCAT連接)保證了融合后的特征具有個(gè)體差異性。通過該模型可以實(shí)時(shí)判斷當(dāng)前時(shí)刻的免耕播種機(jī)工況時(shí)序狀態(tài)值,實(shí)現(xiàn)了某位置點(diǎn)作業(yè)工況的狀態(tài)預(yù)測(cè),從而間接判斷圖像抓拍系統(tǒng)的實(shí)時(shí)清洗狀態(tài)。40次迭代后不同模型的對(duì)比結(jié)果表明:多條件特征通道融合的時(shí)間序列模型對(duì)有效點(diǎn)和無效點(diǎn)的預(yù)測(cè)精度都超過了85%,抓拍圖像清洗平均準(zhǔn)確率為92.4%。因此,本文的研究方法以免耕播種機(jī)工況狀態(tài)作為抓拍圖像清洗依據(jù)是有效的,數(shù)據(jù)清洗后約有63%的冗余數(shù)據(jù)被剔除。

    Abstract:

    Improving the prediction accuracy of working state of no-tillage seeder and cleaning the invalid data timely will improve the data quality and reduce the cache pressure of monitoring equipment. However, as the agricultural machinery moved back and forth in the farmland, monitoring equipment captured a large number of invalid images at both ends of the farmland or when the vehicle stopped. These images affected the accuracy of farmland operation quality evaluation and created congestion in transmission network. A data cleaning method based on multi-condition time series, mainly vehicle speed, seeding rate and instantaneous area, was proposed to deal with the periodic change of long time series of agricultural machinery in the farmland. The model included multiple long-short term memory (LSTM) and spatiotemporal feature channel fusion (CONCAT connect) to maintain the individual difference under multi-condition. The current time sequence state of the agricultural machinery working condition can be predicted, and the real-time cleaning state of the image capture system can be indirectly acquired. Due to screen and capture valid image from captured image every three minutes by cleaning state, the system achieved the maximum efficiency in transmission channel and memory space. The comparison results of different models after 40 iterations showed that the prediction accuracy of this method for both valid and invalid samples was over 85% and the average accuracy of image cleaning was 92.4%. The data cleaning results showed that about 63% of the redundant data was removed after data cleaning. Therefore, the research method took the working condition of no-tillage seeder as the basis of image cleaning was effective, which had high research value and application prospect.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

姜含露,周利明,馬明,李陽,周燕,苑嚴(yán)偉.基于多條件時(shí)間序列的免耕播種機(jī)作業(yè)數(shù)據(jù)清洗方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(1):85-91. JIANG Hanlu, ZHOU Liming, MA Ming, LI Yang, ZHOU Yan, YUAN Yanwei. Data Cleaning Method of No-tillage Seeder Monitoring Data Based on Multi-conditional Time Series[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):85-91.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼