亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度學(xué)習(xí)目標(biāo)測定的大蒜收獲切根裝置設(shè)計(jì)與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(51805282)、江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范推廣項(xiàng)目(NJ2020-24)和國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0701305-02)


Design and Experiment of Garlic Harvesting and Root Cutting Device Based on Deep Learning Target Determination
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為研究適用于大蒜聯(lián)合收獲的智能化切根裝置,提出了基于機(jī)器視覺的非接觸式定位切根方法,設(shè)計(jì)了一種基于深度卷積神經(jīng)網(wǎng)絡(luò)的大蒜切根試驗(yàn)臺(tái)。試驗(yàn)臺(tái)采用深度學(xué)習(xí)的方法,對采集到的圖像進(jìn)行目標(biāo)檢測,利用APP完成人機(jī)交互和結(jié)果顯示,由深度卷積神經(jīng)網(wǎng)絡(luò)給定切根的切入位置,電機(jī)控制系統(tǒng)自動(dòng)調(diào)整定位雙圓盤切根刀完成切根處理。目標(biāo)比較試驗(yàn)表明:鱗莖、根盤和蒜根3種目標(biāo)中,鱗莖可用率為94.79%、置信度得分為0.97697,適合作為檢測目標(biāo);檢測模型比較試驗(yàn)表明:對比基于Faster R-CNN、SSD、YOLO v2、YOLO v3和YOLO v4算法的10種模型,選擇ResNet50作為特征提取網(wǎng)絡(luò)改進(jìn)的YOLO v2模型,兼顧檢測速度與精度(測試程序中的檢測時(shí)間為0.0523s、置信度得分為0.96849);切根試驗(yàn)表明:以鱗莖作為目標(biāo),采用改進(jìn)的YOLOv2模型,置信度得分為0.97099,可用率為96.67%,切根合格率為95.33%,APP中的檢測時(shí)間為0.0887s,滿足大蒜聯(lián)合收獲切根要求。

    Abstract:

    In order to study a suitable intelligent root cutting device for garlic combined harvesting, a non-contact bulb root cutting method with machine vision was proposed, and a garlic root cutting test bench based on a deep convolutional neural network was designed afterwards. Specially, the test bench adopted a deep learning theory to perform target detection on the collected images, through using the APP software in Matlab to complete the human-computer interaction. Then, the results presented that the deep convolutional neural network could determine the cutting position of the garlic root, and the motor control system could adjust the position of the double disc cutting automatically, ensuring the root cutting process completed by the root knife. Target comparison tests showed that bulb (availability rate was 94.79%, confidence score was 0.97697) was suitable for detecting, among the three kinds of bulb, root plate and garlic root. Comparison tests of detection models performed with ten models based on Faster R-CNN, SSD, YOLO v2, YOLO v3 and YOLO v4. The improved YOLO v2 model combined the detection speed and accuracy (the detection time in the test program was 0.0523s, and the confidence score was 0.96849), where ResNet50 was selected as the feature extraction network;by using the improved YOLO v2 model, the root cutting test took bulbs as the targets (the confidence score was 0.97099, the availability rate was 96.67%, the qualified rate of cutting roots was 95.33%, and the detection time in the APP was 0.0887s), can meet the requirements of garlic combined harvesting and cutting roots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊柯,胡志超,于昭洋,彭寶良,張延化,顧峰瑋.基于深度學(xué)習(xí)目標(biāo)測定的大蒜收獲切根裝置設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(1):123-132. YANG Ke, HU Zhichao, YU Zhaoyang, PENG Baoliang, ZHANG Yanhua, GU Fengwei. Design and Experiment of Garlic Harvesting and Root Cutting Device Based on Deep Learning Target Determination[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):123-132.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-08-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼