亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于BERT-Attention-DenseBiGRU的農(nóng)業(yè)問答社區(qū)問句相似度匹配
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2019YFD1101105)、財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系項目(CARS-23-C06)、北京市農(nóng)林科學院青年基金項目(QNJJ202030)和內(nèi)蒙古民族大學教育教學研究項目(QN2021013)


Densely Connected BiGRU Neural Network Based on BERT and Attention Mechanism for Chinese Agriculture-related Question Similarity Matching
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決問答社區(qū)中相同語義問句文本的快速自動檢測,提出一種基于BERT的Attention-DenseBiGRU農(nóng)業(yè)問句相似度匹配模型。針對農(nóng)業(yè)文本具備的特征,采用12層的中文BERT文本預訓練模型對文本數(shù)據(jù)進行向量化處理,并與Word2Vec、Glove、TF-IDF方法進行對比分析,得出BERT方法能夠有效地解決農(nóng)業(yè)文本的高維性和稀疏性問題,并且解決多義詞在不同語境下具有不同含義的問題。該網(wǎng)絡的每一層都使用注意特征的連接信息以及前面所有遞歸層的隱藏特征,為了緩解由于密集拼接而導致特征向量尺寸不斷增大的問題,在模型的最后使用自動編碼器進行特征降維。試驗結果表明:基于BERT的Attention-DenseBiGRU農(nóng)業(yè)問句相似度匹配模型可以提高文本特征的利用率,減少特征丟失,能夠實現(xiàn)快速及準確的農(nóng)業(yè)問句文本相似度匹配,在本文所構建的農(nóng)業(yè)問句相似對數(shù)據(jù)集上精確率及F1值達到97.2%和97.6%,與其他6種問句相似度匹配模型相比,效果提升明顯。

    Abstract:

    To allow fast and automatic detection of the same semantic agriculture-related questions, a method based on BERT-Attention-DenseGRU (gated recurrent unit) was proposed. According to the agriculture question characteristics, twelve layers of the Chinese BERT model method were applied to process and analyze the text data and compare it with the Word2Vec, Glove, and TF-IDF methods, effectively solving the problem of high dimension and sparse data in the agriculture-related text. Each network layer employed the connection information of features and all previous recursive layers’ hidden features. To alleviate the problem of feature vector size increasing due to dense splicing, an autoencoder was used after dense concatenation. The experimental results showed that agriculture-related question similarity matching based on BERT-Attention-DenseBiGRU can improve the utilization of text features, reduce the loss of features, and achieve fast and accurate similarity matching of the agriculture-related question dataset. The precision and F1 values of the proposed model were 97.2% and 97.6%. Compared with six other kinds of question similarity matching models, a state-of-the-art method with the agriculture-related question dataset was presented.

    參考文獻
    相似文獻
    引證文獻
引用本文

王郝日欽,王曉敏,繆祎晟,許童羽,劉志超,吳華瑞.基于BERT-Attention-DenseBiGRU的農(nóng)業(yè)問答社區(qū)問句相似度匹配[J].農(nóng)業(yè)機械學報,2022,53(1):244-252. WANG Haoriqin, WANG Xiaomin, MIAO Yisheng, XU Tongyu, LIU Zhichao, WU Huarui. Densely Connected BiGRU Neural Network Based on BERT and Attention Mechanism for Chinese Agriculture-related Question Similarity Matching[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):244-252.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-09-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼