亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于LightGBM-SSA-ELM的新疆羊舍CO2濃度預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61871475)、廣東省自然科學基金項目(2021A1515011605)、現(xiàn)代農(nóng)業(yè)機械兵團重點實驗室開放項目(BTNJ2021002)、廣州市創(chuàng)新平臺建設計劃項目(201905010006)、廣州市重點研發(fā)計劃項目(20210300003)和廣東省科技廳重點領(lǐng)域研發(fā)計劃項目(2020B0202080002)


Prediction of CO2 Concentration in Xinjiang Breeding Environment of Mutton Sheep Based on LightGBM-SSA-ELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為減少肉羊集約化養(yǎng)殖過程中因環(huán)境惡化產(chǎn)生的應激反應,精準調(diào)控CO2質(zhì)量濃度,提出了基于分布式梯度提升框架(LightGBM)、麻雀搜索算法(SSA)融合極限學習機(ELM)的CO2質(zhì)量濃度預測模型。首先利用LightGBM篩選出與CO2質(zhì)量濃度相關(guān)的重要特征,降低預測模型的輸入維度;然后選擇Sigmoid為激活函數(shù),使用具有較強非線性處理能力的單隱含層ELM神經(jīng)網(wǎng)絡算法構(gòu)建CO2質(zhì)量濃度預測模型;最后通過麻雀智能優(yōu)化算法對ELM模型中所需要的超參數(shù)進行優(yōu)化,并將優(yōu)化后模型應用于新疆瑪納斯集約化肉羊養(yǎng)殖基地。試驗結(jié)果表明,該模型預測均方根誤差(RMSE)、平均絕對誤差(MAE)和決定系數(shù)(R2)分別為0.0213mg/L、0.0136mg/L和0.9886,綜合性能指標優(yōu)于支持向量回歸(SVR)、反向傳播神經(jīng)網(wǎng)絡(BPNN)、長短記憶神經(jīng)網(wǎng)絡(LSTM)、門限循環(huán)單元(GRU)和LightGBM等;CO2質(zhì)量濃度預測曲線貼近真實曲線,具有良好的預測效果,能有效滿足集約化肉羊養(yǎng)殖過程中CO2質(zhì)量濃度精準預測及調(diào)控要求。

    Abstract:

    Air quality plays an important role in mutton sheep breeding environment, in order to reduce the stress response of CO2 to the growth of large-scale mutton sheep and ensure the healthy growth of mutton sheep in the appropriate environment, the key is to accurately control the CO2 in the mutton sheep breeding environment. A CO2 prediction model of mutton sheep breeding environment was proposed based on light gradient boosting machine (LightGBM), sparrow search algorithm (SSA) and extreme learning machine (ELM). Firstly, LightGBM was used to screen out the important characteristics of carbon dioxide concentration and reduce the input dimension of the prediction model. Then, ELM neural network algorithm with single hidden layer with strong nonlinear processing ability was used to build the CO2 prediction model. Finally, through the sparrow intelligent optimization algorithm, the super parameters needed in ELM model were optimized to obtain the best prediction model. The prediction model was applied to a large-scale mutton sheep breeding base in Manas County, Changji Hui Autonomous Prefecture, Xinjiang Uygur Autonomous Region, and good prediction results were obtained. The experimental results showed that the prediction model had good prediction effect, and the root mean square error (RMSE) of ELM was higher than that of SVR, BPNN, LSTM, GRU and LightGBM. The RMSE, mean absolute error (MAE) and R2 were 0.0213mg/L, 0.0136mg/L and 0.9886, respectively. The results showed that the combined model can not only achieve accurate control of carbon dioxide in sheep house, but also meet the needs of fine decision-making for mutton sheep breeding. It also can help farmers make decisions and reduce farming risks.

    參考文獻
    相似文獻
    引證文獻
引用本文

尹航,呂佳威,陳耀聰,岑紅蕾,李景彬,劉雙印.基于LightGBM-SSA-ELM的新疆羊舍CO2濃度預測[J].農(nóng)業(yè)機械學報,2022,53(1):261-270. YIN Hang, Lü Jiawei, CHEN Yaocong, CEN Honglei, LI Jingbin, LIU Shuangyin. Prediction of CO2 Concentration in Xinjiang Breeding Environment of Mutton Sheep Based on LightGBM-SSA-ELM[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):261-270.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼