亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于X射線成像與卷積神經(jīng)網(wǎng)絡(luò)的核桃內(nèi)部品質(zhì)檢測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山西省重點研發(fā)計劃項目(201903D221027)


Detection of Walnut Internal Quality Based on X-ray Imaging Technology and Convolution Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前我國核桃內(nèi)部品質(zhì)混雜、不易檢測等問題,提出利用X射線成像技術(shù)結(jié)合卷積神經(jīng)網(wǎng)絡(luò)對核桃內(nèi)部品質(zhì)進(jìn)行快速檢測。對獲取的核桃X射線圖像進(jìn)行預(yù)處理和數(shù)據(jù)擴(kuò)充,采用GoogLeNet、ResNet 101、MobileNet v2和VGG 19共4種遷移學(xué)習(xí)模型構(gòu)建卷積神經(jīng)網(wǎng)絡(luò),對核桃數(shù)據(jù)集進(jìn)行訓(xùn)練。通過預(yù)測集準(zhǔn)確率、預(yù)測損失值、測試集準(zhǔn)確率以及運行時間對模型進(jìn)行分析,優(yōu)化模型參數(shù),開發(fā)核桃內(nèi)部品質(zhì)檢測分選系統(tǒng)并進(jìn)行模型驗證。研究結(jié)果表明:GoogLeNet模型學(xué)習(xí)率設(shè)置為0.001,迭代次數(shù)設(shè)置為25次時預(yù)測效果最優(yōu),預(yù)測準(zhǔn)確率為96.67%。系統(tǒng)驗證結(jié)果表明:空殼核桃的判別準(zhǔn)確率達(dá)到100%,平均判別準(zhǔn)確率為96.39%。該系統(tǒng)可實現(xiàn)核桃內(nèi)部品質(zhì)的無損檢測分選。

    Abstract:

    In order to solve the problems of export mixed internal quality and not easily to detect of walnuts in China, X-ray imaging technology combined with convolution neural network was proposed to quickly detect the internal quality of walnut. Using X-ray transmittance, X-ray images containing internal information were obtained. Firstly, X-ray images of walnut were preprocessed and data expanded. Then, four transfer learning models, including GoogLeNet, ResNet 101, MobileNet v2 and VGG 19, were used to construct convolutional neural networks to train walnut data sets. The model was analyzed through prediction set accuracy, loss value, test set accuracy and running time, and the model parameters were optimized. Finally, the walnut internal quality detection and sorting system was developed and applied to model verification. The results showed that among the four different transfer learning models, GoogLeNet model had the highest prediction accuracy. When the learning rate of GoogLeNet model was set to 0.001 and the epoch was set to 25, the prediction effect was the best, and the prediction accuracy was 96.67%. The results of system verification showed that the discriminant accuracy of shell walnut reached 100%, and the average discriminant accuracy was 96.39%. The system could realize the non-destructive testing and sorting of walnut internal quality, and provide further theoretical basis and technical reference for the equipment research and development.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張淑娟,高庭耀,任銳,孫海霞.基于X射線成像與卷積神經(jīng)網(wǎng)絡(luò)的核桃內(nèi)部品質(zhì)檢測[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(1):383-388. ZHANG Shujuan, GAO Tingyao, REN Rui, SUN Haixia. Detection of Walnut Internal Quality Based on X-ray Imaging Technology and Convolution Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):383-388.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-09-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼