亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進YOLO v4的群體棉種雙面破損檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(31760340)、新疆生產(chǎn)建設(shè)兵團南疆重點領(lǐng)域科技支撐計劃項目(2018DB001)、華中農(nóng)業(yè)大學-塔里木大學聯(lián)合基金項目(HNLH202002)和中國農(nóng)業(yè)大學-塔里木大學聯(lián)合基金項目(TDZNLH201703)


Detection Method of Double Side Breakage of Population Cotton Seed Based on Improved YOLO v4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對研究人員難以利用計算機視覺對棉種這類尺寸較小的物體進行雙面檢測,導致檢測效果不佳的問題,設(shè)計了一款新型棉種檢測分選裝置,利用亞克力板在強光和白色背景下透明的特點,將棉種通過上料裝置滑入透明亞克力板的凹槽中,隨著轉(zhuǎn)盤的轉(zhuǎn)動,同一批棉種的正反兩面圖像分別由2個不同位置的CCD相機采集得到。利用改進YOLO v4的目標檢測算法檢測破損棉種,試驗結(jié)果表明該方法建立的模型對群體棉種中的破損棉種和完好棉種的檢測準確率達到95.33%、召回率為96.31%、漏檢率為0,檢測效果優(yōu)于原YOLO v4網(wǎng)絡(luò),實現(xiàn)了對雙面群體棉種的破損識別,為后續(xù)脫絨棉種智能檢測裝備研發(fā)提供了技術(shù)支持。

    Abstract:

    Computer vision is one of the commonly used technical methods in the field of cotton seed detection. It has been widely used in the field of non-destructive inspection of agricultural products. However, in most cases, it is difficult for researchers to use computer vision to detect small-sized objects such as cotton seeds on both sides. The detection effect is not good. Aiming at this problem, a type of cotton seed detection and sorting device was designed, which used the transparent characteristics of the acrylic plate under strong light and white background to slide the cotton seed into the groove of the transparent acrylic plate through the feeding device. With the rotation of the turntable, the front and back images of the same batch of cotton were collected by two CCD cameras at different positions. The improved YOLO v4 target detection algorithm was used to detect damaged cotton seeds. The experimental results showed that the model established by this method can detect damaged and intact cotton seeds in the population cotton seeds with an accuracy of 95.33%, recall rate of 96.31%, and missed detection rate of 0. The detection effect was better than that of the original YOLO v4 network, respectively. The proposed method realized the identification of the damage of double-sided group cotton seed, and provided technical support for the subsequent research and development of related delinted cotton seed intelligent detection equipment.

    參考文獻
    相似文獻
    引證文獻
引用本文

王巧華,顧偉,蔡沛忠,張洪洲.基于改進YOLO v4的群體棉種雙面破損檢測方法[J].農(nóng)業(yè)機械學報,2022,53(1):389-397. WANG Qiaohua, GU Wei, CAI Peizhong, ZHANG Hongzhou. Detection Method of Double Side Breakage of Population Cotton Seed Based on Improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):389-397.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼