亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于自適應(yīng)深度學(xué)習(xí)的數(shù)控機(jī)床運行狀態(tài)預(yù)測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金面上項目(51775074)、重慶市自然科學(xué)基金項目(cstc2021jcyj-msxmX0372)、重慶市技術(shù)創(chuàng)新與應(yīng)用示范專項(cstc2018jszx-cyzdX0172)、重慶市基礎(chǔ)研究與前沿探索項目(cstc2018jcyjAX0352)和重慶市專業(yè)學(xué)位研究生教學(xué)案例庫項目(2019-79)


Motion State Prediction Method of CNC Machine Tools Based on Adaptive Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對機(jī)床狀態(tài)動態(tài)標(biāo)簽及差異化分布數(shù)據(jù)下的預(yù)測適應(yīng)性差與準(zhǔn)確度低問題,結(jié)合時序特征關(guān)系和模型融合方法,建立自適應(yīng)混合深度學(xué)習(xí)模型進(jìn)行機(jī)床狀態(tài)預(yù)測。首先,通過融合最小近鄰分類器,設(shè)計一種基于權(quán)值累積的自適應(yīng)更新法則,建立具有數(shù)據(jù)自適應(yīng)性的狀態(tài)預(yù)測模型。在此基礎(chǔ)上,提出一種基于中心損失函數(shù)的特征距離度量優(yōu)化策略,構(gòu)建綜合決策損失函數(shù),確保模型有效融合。在提出的一種組合收斂準(zhǔn)則基礎(chǔ)上,采用BBPT方法訓(xùn)練優(yōu)化模型,對測試數(shù)據(jù)進(jìn)行了驗證。實驗結(jié)果表明,該模型能夠自適應(yīng)動態(tài)標(biāo)簽及差異化分布數(shù)據(jù),準(zhǔn)確預(yù)測數(shù)控機(jī)床狀態(tài)類別,抗干擾強(qiáng),響應(yīng)快。在GPU模式下預(yù)測時間最短僅需100ms,較BP和LSTM分類網(wǎng)絡(luò),預(yù)測準(zhǔn)確率和實時性均顯著提高。

    Abstract:

    The feature relationship of the motion state of CNC machine tools is very complex. Realizing the prediction of the future operation state of CNC machine tools can tap the potential abnormal emergencies of machine tools and enhance the stability of machine tool processing. In view of the problem of poor adaptability and low accuracy of prediction under dynamic label of machine tool state and differential distribution data, an adaptive hybrid deep learning model was established to predict machine tool state by combining time series feature relationship and model fusion method. Firstly, by combining the nearest neighbor classifier, an adaptive updating rule based on weight accumulation was designed, and a state prediction model with data adaptability was established. On this basis, an optimization strategy of feature distance metric based on center loss function was proposed, and a comprehensive decision loss function was constructed to ensure model fusion effectively. Based on a combination convergence criterion, the BBPT method was used to train the model, and the test data was verified . The experimental results showed that the model can adapt dynamic label and differential distribution data. The prediction of the state category of CNC machine tools had strong antiinterference, fast response and high accuracy, and can better meet the requirements of machine tool state classification and prediction. The prediction accuracy and real-time performance were significantly compared with BP and LSTM classification networks, and the shortest prediction time was only 100ms in GPU mode.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜柳青,李祥,余永維.基于自適應(yīng)深度學(xué)習(xí)的數(shù)控機(jī)床運行狀態(tài)預(yù)測方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(1):451-458. DU Liuqing, LI Xiang, YU Yongwei. Motion State Prediction Method of CNC Machine Tools Based on Adaptive Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):451-458.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼