亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

葉片含水率推掃式高光譜成像去條紋標(biāo)定法優(yōu)化
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(32072498)


Method of De-stripe Calibration Applied in Water Content Spatial Visualization in Ginkgo Leaf on Spectral Imagery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    由推掃式高光譜成像系統(tǒng)所采集的圖像中會(huì)出現(xiàn)特有的條紋噪聲,這些噪聲會(huì)穿過(guò)化學(xué)計(jì)量學(xué)模型,最終出現(xiàn)在反映被測(cè)指標(biāo)空間分布情況的可視化預(yù)測(cè)圖中,干擾其空間特征的呈現(xiàn)及解讀。以銀杏葉含水率為例,基于偏最小二乘回歸(PLSR)預(yù)測(cè)模型,將經(jīng)去條紋標(biāo)定法處理后的圖像分別與原始圖像及經(jīng)傳統(tǒng)均值濾波增強(qiáng)后的圖像進(jìn)行比較,研究去條紋標(biāo)定法對(duì)化學(xué)計(jì)量學(xué)指標(biāo)空間分布預(yù)測(cè)的改進(jìn)作用。去條紋標(biāo)定法和傳統(tǒng)均值濾波增強(qiáng)不會(huì)對(duì)感興趣區(qū)域均值PLSR預(yù)測(cè)模型決定系數(shù)R2P產(chǎn)生明顯影響,其隨主成分?jǐn)?shù)增加,呈先增后減趨勢(shì),當(dāng)主成分?jǐn)?shù)為10時(shí)R2P均達(dá)到最大,且預(yù)測(cè)準(zhǔn)度相當(dāng)。將化學(xué)計(jì)量學(xué)模型應(yīng)用到像素光譜,進(jìn)行指標(biāo)空間分布預(yù)測(cè)時(shí),隨主成分?jǐn)?shù)由6增至10,模型的波段增益系數(shù)逐漸增大,導(dǎo)致化學(xué)計(jì)量學(xué)可視化圖像中條紋噪聲逐漸增加:在由原始圖像或經(jīng)傳統(tǒng)均值濾波增強(qiáng)圖像得到的含水率可視化圖像中,條紋噪聲逐漸增加,甚至完全湮沒(méi)葉面內(nèi)部含水率空間分布信息;而去條紋標(biāo)定法能夠明顯抑制本征條紋噪聲,即使當(dāng)主成分?jǐn)?shù)增加到8時(shí)(R2P為0.88),含水率可視化圖像仍然幾乎不見(jiàn)條紋干擾,在葉面空間分布的細(xì)節(jié)特征依舊清晰可辨,顯著提升對(duì)含水率空間分布的預(yù)測(cè)效果。比較研究表明,去條紋標(biāo)定法明顯抑制推掃式高光譜成像系統(tǒng)本征條紋噪聲,能夠提高靶向指標(biāo)空間分布的可視化精度;在保留空間細(xì)節(jié)免受條紋干擾的情況下,得以采用波段增益系數(shù)更大的預(yù)測(cè)模型,從而提高指標(biāo)空間分布的可視化預(yù)測(cè)準(zhǔn)度。

    Abstract:

    A distinctive spatial noise pattern in the form of parallel stripes exists commonly in the images that are acquired using pushbroom hyperspectral imaging systems. Passing through chemometric systems, it often resurfaces in resultant images of the spatial distributions of various chemical or quality indices, blocking or breaking the spatial details therein, and undermining consequent interpretation. In regard of this, an image de-striping calibration was investigated for its contribution to improving spatial chemometric predictions. The de-stripe calibration was first applied to the hyperspectral images of 155 ginkgo leaves before mapping the spatial distribution of water content (WC) using partial least squares regression-chemometric models. In comparison, the process was repeated twice, respectively, from either raw hyperspectral image without de-stripe calibration or those through a conventional image-enhancement of spatial smoothing-filtering. Results showed that neither the de-stripe calibration nor the conventional image enhancement would affect the accuracy of chemometric models, and that the coefficient of determination of prediction, or R2P, irrespective of different preprocessing in all three cases, were risen up with the increase of 〖JP2〗number of principal components (PCs), until peaking at the number of 10 PCs (R2P=0.93~0.94). However, difference emerged when applying chemometric models to the spectra at individual pixels to map the spatial distribution of WC over leaf-surface. As the number of PCs was increased from 6 to 10, so did the spectral gains of chemometric models causing strengthening stripy noise in the WC maps from either the un-treated or conventionally smooth-filtered images, with noise-stripes being the most prominent spatial feature at 8 PCs, and even deteriorating to the point, at 9 or 10 PCs, that any possible WC variation over a leaf would be totally blocked up. To the contrary, the de-stripe calibration successfully suppressed the distinctive noise patterns inherent from the pushbroom hyperspectral imaging system, so that no discernible stripes appeared in the WC maps from the destriped hyperspectral images and stunning spatial details were preserved in the maps derived from the relatively high accuracy chemometric model of 8 PCs (R2P=0.88). It may be safely concluded from this comparative study that de-stripe calibration of pushbroom hyperspectral images did contribute rich spatial details and high accuracy to spatial chemometric predictions through keeping spatial details intact while enabling the application of models with high spectral gains.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙茂程,陳加新,邢曉陽(yáng),汪希偉,顧越,李忠.葉片含水率推掃式高光譜成像去條紋標(biāo)定法優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):212-220. ZHAO Maocheng, CHEN Jiaxin, XING Xiaoyang, WANG Xiwei, GU Yue, LI Zhong. Method of De-stripe Calibration Applied in Water Content Spatial Visualization in Ginkgo Leaf on Spectral Imagery[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):212-220.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-14
  • 出版日期:
文章二維碼