亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于TrAdaBoost算法的近紅外光譜模型傳遞研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

北京市自然科學(xué)基金項(xiàng)目(4182017)和國家自然科學(xué)基金項(xiàng)目(61807001)


Near Infrared Spectroscopy Calibration Transfer Based on TrAdaBoost Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    隨著近紅外光譜檢測(cè)儀種類的增多,不同儀器間的校正模型存在無法共享問題,可利用模型傳遞解決。以食用油為研究對(duì)象,在主機(jī)上建立油酸質(zhì)量比的極限學(xué)習(xí)機(jī)校正模型,利用遷移學(xué)習(xí)中的TrAdaBoost算法把主機(jī)模型傳遞到從機(jī)上,探討標(biāo)準(zhǔn)化樣品數(shù)量對(duì)模型傳遞效果的影響,并與直接標(biāo)準(zhǔn)化算法、缺損數(shù)據(jù)重構(gòu)算法和極限學(xué)習(xí)機(jī)自編碼器的模型傳遞算法進(jìn)行對(duì)比。結(jié)果表明:主機(jī)模型經(jīng)TrAdaBoost算法模型傳遞后,從機(jī)預(yù)測(cè)集決定系數(shù)R2從0.489上升到0.892,預(yù)測(cè)集均方根誤差(Root mean square error of prediction,RMSEP)從4.824mg/g下降到0.267mg/g,且模型效果幾乎不受標(biāo)準(zhǔn)化樣品數(shù)量的影響。說明TrAdaBoost算法可以有效應(yīng)用于模型傳遞領(lǐng)域,實(shí)現(xiàn)了不同光譜儀器之間的共享。

    Abstract:

    With more and more types of near infrared spectroscopy detectors, the inability to share calibration models between different instruments has become the main problem that limits its application, and calibration transfer has become the key to solve this problem. Taking edible oil as the research object, the extreme learning machine model of its acid value on the master instrument was established. And the TrAdaBoost algorithm in transfer learning was used to transfer the master model to the slave model, and the dependence of calibration transfer on the number of standardization samples was explored. It was also compared with the direct standardized, missing data recovery and transfer via extreme learning machine autoencoder method. The results showed that the predictive power of the slave samples after the TrAdaBoost calibration transfer algorithm was most effective and very close to the predictive value of the master sample-master model. The R2 of the validation set was increased from 0.489 to 0.892, the root mean square error of prediction (RMSEP) was reduced from 4.824mg/g to 0.267mg/g. Specifically, the model effect was almost independent of the number of standardized samples. The next degree of effect was the transfer via extreme learning machine auto-encoder method algorithm (TEAM), the missing data recovery algorithm (MDR) and direct standardized algorithm (DS) in decreasing order, respectively. It was shown that the TrAdaBoost can be effectively applied to the calibration transfer, and it can realize the communication between different spectroscopic instruments, which provided an idea for the calibration transfer.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉翠玲,徐金陽,孫曉榮,張善哲,昝佳睿.基于TrAdaBoost算法的近紅外光譜模型傳遞研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):239-245. LIU Cuiling, XU Jinyang, SUN Xiaorong, ZHANG Shanzhe, ZAN Jiarui. Near Infrared Spectroscopy Calibration Transfer Based on TrAdaBoost Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):239-245.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-12-07
  • 出版日期:
文章二維碼