亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于實(shí)例分割和光流計(jì)算的死兔識(shí)別模型研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-43-D-3)


Dead Rabbit Recognition Model Based on Instance Segmentation and Optical Flow Computing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)自動(dòng)化識(shí)別死兔,提高養(yǎng)殖管理效率,以籠養(yǎng)生長(zhǎng)兔為研究對(duì)象,以基于優(yōu)化Mask RCNN的實(shí)例分割網(wǎng)絡(luò)和基于LiteFlowNet的光流計(jì)算網(wǎng)絡(luò)為研究方法,構(gòu)建了一種多目標(biāo)背景下基于視頻關(guān)鍵幀的死兔識(shí)別模型。該模型的實(shí)例分割網(wǎng)絡(luò)以ResNet 50殘差網(wǎng)絡(luò)為主干,結(jié)合PointRend算法實(shí)現(xiàn)目標(biāo)輪廓邊緣的精確提取。視頻關(guān)鍵幀同時(shí)輸入實(shí)例分割網(wǎng)絡(luò)和光流計(jì)算網(wǎng)絡(luò),獲取肉兔掩膜的光流信息和掩膜邊界框中心點(diǎn)坐標(biāo)。利用光流閾值去除活躍肉兔掩膜,通過(guò)核密度估計(jì)算法獲取剩余中心點(diǎn)坐標(biāo)的密度分布,通過(guò)密度分布閾值實(shí)現(xiàn)死兔的判別。實(shí)驗(yàn)結(jié)果表明,肉兔圖像分割網(wǎng)絡(luò)的分類準(zhǔn)確率為96.1%,像素分割精確度為95.7%,死兔識(shí)別模型的識(shí)別準(zhǔn)確率為90%。本文提出的死兔識(shí)別模型為兔舍死兔識(shí)別和篩選工作提供了技術(shù)支撐。

    Abstract:

    Screening and isolating dead rabbits is one of the important work of meat rabbit farms, which is helpful to build a rabbit breeding safety system. In order to identify dead rabbits automatically and improve the efficiency of breeding management, cage-rearing breeding rabbits was taken as the research object, a dead rabbit recognition model was proposed which was based on the modified Mask RCNN and LiteFlowNet. The instance segmentation part of the model used ResNet 50 residual network as the backbone, used PointRend algorithm as the network head to extract the instance contour accurately. The key frames of the rabbit videos were sent to rabbit instance segmentation network and optical flow calculation network at the same time to obtain the optical flow of the meat rabbit mask and the center point coordinates of the instance boundary boxes. The masks of the active rabbits were removed by the threshold of the optical flow, and then the density distribution of the remaining center point coordinates was obtained by kernel density estimation algorithm, and the dead rabbits were distinguished by density distribution threshold. The experiment results showed that the classification accuracy of the rabbit segmentation network was 96.1%, the pixel segmentation accuracy of the rabbit segmentation network was 95.7%, and the recognition accuracy of the dead rabbit recognition model was 90%. This study provided technical support for dead rabbit recognizing and isolating in rabbit farms.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

段恩澤,王糧局,雷逸群,郝宏運(yùn),王紅英.基于實(shí)例分割和光流計(jì)算的死兔識(shí)別模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):256-264,273. DUAN Enze, WANG Liangju, LEI Yiqun, HAO Hongyun, WANG Hongying. Dead Rabbit Recognition Model Based on Instance Segmentation and Optical Flow Computing[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):256-264,273.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-21
  • 出版日期:
文章二維碼