亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLO v5的植物葉綠素含量估測與可視化技術
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(32171790)、江蘇省現(xiàn)代農(nóng)機裝備與技術示范推廣項目(NJ2020-18)、江蘇省六大人才高峰項目(NY-058)、江蘇省青藍工程項目(蘇教201842)、江蘇省333工程項目(蘇人20186)和江蘇省重點研發(fā)計劃現(xiàn)代農(nóng)業(yè)項目(BE2021307)


Estimation and Visualization of Chlorophyll Content in Plant Based on YOLO v5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為快速估測并直觀顯示植物葉綠素含量的冠層分布,以苗期的簸箕柳作為研究對象,構建了一套多視角表型信息采集平臺,通過目標檢測算法YOLO v5檢測識別出植物分枝區(qū)域并提取不同色彩空間下的主枝部分分層色彩因子,對比多種模型回歸方法,將多組色彩因子組合與手持式葉綠素含量測定儀測得的SPAD進行反演建模,得到擬合度最高的色彩因子組合回歸模型;將該模型應用于整株苗木圖像來表征SPAD的冠層分布,實現(xiàn)葉綠素含量在整株植物分布上的可視化。結果表明:通過對比多種回歸算法下不同色彩因子組合模型與SPAD指數(shù)的相關性,發(fā)現(xiàn)在RGB空間下由色彩因子R、G、B、G/R、G/B構建的對數(shù)項嶺回歸算法擬合模型效果最佳,其擬合度最高(R2為0.73),且誤差最小(RMSE為2.16)。本文通過采集多視角圖像,基于YOLO v5目標檢測模型識別出植物主枝冠層區(qū)域,得到葉綠素含量冠層分布的最佳估測模型并進行可視化,可實現(xiàn)植物苗期生長的監(jiān)測與植物長勢的快速評判,為氮脅迫早期診斷和氮肥科學施加提供技術指導。

    Abstract:

    Chlorophyll content plays an important role in plant photosynthesis, and is indicative of the growth and health of plants. There has been strong interest to measure chlorophyll content quickly and nondestructively, and visualize its spatial distribution in plants. A custommade imaging platform was used to acquire multi-view RGB images of the seedlings of Salix suchowensis Cheng, a close sister species of poplar. An experiment in growth chamber was conducted involving 32 seedlings. These seedlings was subjected to four levels of nitrogen rates. A series of image processing algorithms was developed, which allowed us to detect the main branch of the plants (using YOLO v5), extract color indices from the main branch to estimate SPAD values (using ridge regression),and obtain the best color factor combination regression model by comparing various model regression methods. The results showed that the best performing regression model to estimate SPAD values employed six color indices derived from the RGB images as predictor variables, with R2 of 0.73 and RMSE of 2.16. Finally, the spatial distribution of chlorophyll content of the whole seedling was developed and visualized. In conclusion, the rapid and nondestructive approach to estimate chlorophyll content of poplar seedlings using highthroughput, multi-view RGB imaging was investigated. The imaging platform, the algorithms for plant image analysis and color indices extraction, as well as the models to estimate SPAD readings, provided technical feasibilities to continually assess growth and health related parameters for tree seedlings, and could guide the early diagnosis of nitrogen stress in plants and suitable application of nitrogen fertilizers.

    參考文獻
    相似文獻
    引證文獻
引用本文

張慧春,張萌,邊黎明,葛玉峰,李小平.基于YOLO v5的植物葉綠素含量估測與可視化技術[J].農(nóng)業(yè)機械學報,2022,53(4):313-321. ZHANG Huichun, ZHANG Meng, BIAN Liming, GE Yufeng, LI Xiaoping. Estimation and Visualization of Chlorophyll Content in Plant Based on YOLO v5[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):313-321.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-09
  • 出版日期:
文章二維碼