亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于K-medoids和LSTM的冷鏈運(yùn)輸環(huán)境預(yù)測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0701002)


Cold Chain Transportation Environment Prediction Method Based on K-medoids and LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前冷鏈儲(chǔ)運(yùn)環(huán)境狀態(tài)僅通過(guò)當(dāng)前環(huán)境監(jiān)測(cè)數(shù)據(jù)進(jìn)行判斷,未能對(duì)環(huán)境變化趨勢(shì)做出預(yù)判,無(wú)法很好地滿(mǎn)足冷鏈儲(chǔ)運(yùn)環(huán)境性能評(píng)估的需求,提出了一種基于K中心點(diǎn)算法(K-medoids)和長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)相結(jié)合的冷藏車(chē)廂溫濕度多步預(yù)測(cè)方法。將冷藏車(chē)廂內(nèi)歷史溫濕度數(shù)據(jù)、采集節(jié)點(diǎn)分布特征按照時(shí)間序列作為輸入,采用K-medoids對(duì)其進(jìn)行數(shù)據(jù)融合,然后將融合后的數(shù)據(jù)按照時(shí)間序列輸入LSTM網(wǎng)絡(luò)進(jìn)行溫濕度預(yù)測(cè)。將該預(yù)測(cè)方法應(yīng)用于舟山興業(yè)集團(tuán)的冷藏車(chē)內(nèi)進(jìn)行溫濕度預(yù)測(cè)驗(yàn)證。試驗(yàn)結(jié)果表明:該預(yù)測(cè)方法對(duì)于冷藏車(chē)廂內(nèi)溫度預(yù)測(cè)的均方根誤差、平均絕對(duì)誤差、平均絕對(duì)百分比誤差分別為0.3438℃、0.2730℃、1.51%;對(duì)于冷藏車(chē)廂內(nèi)相對(duì)濕度均方根誤差、平均絕對(duì)誤差、平均絕對(duì)百分比誤差分別為2.5619%、1.9956%、3.53%,相比于BP神經(jīng)網(wǎng)絡(luò)等其他淺層模型,該模型具有較好的預(yù)測(cè)精度和泛化能力,能夠滿(mǎn)足冷鏈儲(chǔ)運(yùn)環(huán)境預(yù)測(cè)的實(shí)際需求,可為冷鏈運(yùn)輸環(huán)境精細(xì)化管理和調(diào)控提供策略支持。

    Abstract:

    Among the many environmental factors in the cold chain storage and transportation environment, the temperature and humidity in the cabin are the key factors, and they have characteristics such as nonlinearity and strong coupling. At the same time, the acquired data has noise interference, In order to solve the traditional single-point forecast cannot meet the needs of cold chain storage and transportation environmental performance evaluation, a multi-step prediction method for refrigerated compartment temperature and humidity based on the combination of K-medoids and long short-term memory network (LSTM) was proposed. The historical temperature and humidity data in the refrigerated compartment and the distribution characteristics of the collection nodes were taken as input according to the time series, and K-medoids were used for data fusion, and then the fused data was input into the LSTM network according to the time series for temperature and humidity prediction. The prediction method was applied to the prediction of temperature and humidity in the refrigerated vehicle of Zhoushan Xingye Group. The test results showed that the RMSE of the prediction method for the temperature in the refrigerated vehicle was 0.3438℃, the MAE was 0.2730℃, and the MAPE was 1.51%; the RMSE of the humidity in the refrigerated compartment was 2.5619%, the MAE was 1.9956%, and the MAPE was 3.53%; compared with K-medoids-BP, K-medoids-RBF, K-medoids-Elman neural network model, all showed that the proposed model had higher prediction accuracy, and can provide strategic support for the fine management and regulation of the cold chain transportation environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

苑嚴(yán)偉,孫國(guó)慶,劉陽(yáng)春,王猛,趙博,汪鳳珠.基于K-medoids和LSTM的冷鏈運(yùn)輸環(huán)境預(yù)測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(4):322-329. YUAN Yanwei, SUN Guoqing, LIU Yangchun, WANG Meng, ZHAO Bo, WANG Fengzhu. Cold Chain Transportation Environment Prediction Method Based on K-medoids and LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):322-329.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-30
  • 出版日期:
文章二維碼