亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于K-means聚類和RF算法的葡萄霜霉病檢測(cè)分級(jí)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省農(nóng)業(yè)自主創(chuàng)新基金項(xiàng)目(CX(20)3172)、國(guó)家自然科學(xué)基金面上項(xiàng)目(31971775)和重慶市技術(shù)創(chuàng)新與應(yīng)用發(fā)展專項(xiàng)(cstc2019jscx-gksbX0089)


Grading Detection Method of Grape Downy Mildew Based on K-means Clustering and Random Forest Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)自然環(huán)境復(fù)雜背景下葡萄霜霉病檢測(cè)分級(jí)困難的問(wèn)題,提出了一種基于語(yǔ)義分割結(jié)合K-means聚類和隨機(jī)森林算法的葡萄霜霉病檢測(cè)分級(jí)方法,實(shí)現(xiàn)對(duì)葡萄霜霉病快速分級(jí)。構(gòu)建了葡萄霜霉病數(shù)據(jù)集,采用HRNet v2+OCR網(wǎng)絡(luò)建立葡萄葉片語(yǔ)義分割模型,提取復(fù)雜環(huán)境下葡萄葉片;采用K-means聚類算法將葡萄葉片分解為若干子區(qū)域圖像,并標(biāo)記少量數(shù)據(jù)集進(jìn)行隨機(jī)森林算法學(xué)習(xí),實(shí)現(xiàn)葡萄葉片病斑分割與提取;同時(shí)在葉片提取和病斑提取過(guò)程中,設(shè)計(jì)一種像素尺寸變換方法,解決圖像分辨率引起的精度低問(wèn)題?;贖RNet v2+OCR網(wǎng)絡(luò)的葡萄葉片分割模型的準(zhǔn)確率為98.45%,平均交并比為97.23%;融合K-means聚類和隨機(jī)森林(RF)算法的葡萄葉片正面、反面和正反面霜霉病病害分級(jí)準(zhǔn)確率分別為52.59%、73.08%和63.32%,病害等級(jí)誤差小于等于2級(jí)時(shí)的病害分級(jí)準(zhǔn)確率分別為88.67%、96.97%和92.98%。研究結(jié)果表明,基于K-means聚類和隨機(jī)森林算法的葡萄霜霉病檢測(cè)分級(jí)方法能夠準(zhǔn)確地分割自然環(huán)境復(fù)雜背景下的葡萄葉片和葡萄霜霉病病斑,并實(shí)現(xiàn)葡萄霜霉病分級(jí),為葡萄霜霉病精準(zhǔn)防治提供了方法和模型支持。

    Abstract:

    Aiming at the difficulty of grape downy mildew grading detection under the complex background of natural environment, a method of grape downy mildew grading detection based on semantic segmentation combined with K-means clustering and random forest was proposed to realize the rapid grading of grape downy mildew. The image data set of grape downy mildew under the complex background of natural environment was constructed, and the semantic segmentation model of grape leaf was established by HRNet v2+OCR network to extract grape leaf image. The K-means clustering algorithm was used to decompose grape leaf image into several subregion images, and a small number of data sets were marked for random forest learning to realize grape leaf disease spot segmentation and extraction from leaf image. At the same time, in the process of grape leaf extraction and disease spot extraction, an image size transformation method was designed to solve the problem of low accuracy caused by image resolution. The accuracy of grape leaf segmentation model based on HRNet v2+OCR network was 98.45%, and the mean intersection over union was 97.23%. The accuracy rates of downy mildew grading of grape leaf front, back and both sides were 52.59%, 73.08% and 63.32%, respectively, and the accuracy rates of disease grade error less than or equal to grade 2 were 88.67%, 96.97% and 92.98%, respectively. The research results showed that the grape downy mildew grading detection method based on K-means clustering and random forest could accurately segment grape leaf and grape downy mildew spots under the complex background of natural environments, and achieve grape downy mildew rapid grading, providing method and model support for precise control of grape downy mildew.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李翠玲,李余康,譚昊然,王秀,翟長(zhǎng)遠(yuǎn).基于K-means聚類和RF算法的葡萄霜霉病檢測(cè)分級(jí)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):225-236,324. LI Cuiling, LI Yukang, TAN Haoran, WANG Xiu, ZHAI Changyuan. Grading Detection Method of Grape Downy Mildew Based on K-means Clustering and Random Forest Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):225-236,324.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期: