亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于GC-Cascade R-CNN的梨葉病斑計(jì)數(shù)方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-28)


Pear Leaf Disease Spot Counting Method Based on GC-Cascade R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高梨葉片病害發(fā)生程度診斷的效率和準(zhǔn)確性,本文提出基于全局上下文級聯(lián)R-CNN網(wǎng)絡(luò)(Global context Cascade R-CNN,GC-Cascade R-CNN)的梨葉病斑計(jì)數(shù)方法。模型的主干特征提取網(wǎng)絡(luò)嵌入全局上下文模塊(Global context feature model,GC-Model),建立有效的長距離和通道依賴,增強(qiáng)目標(biāo)特征信息。引入特征金字塔網(wǎng)絡(luò)(Feature pyramid network,F(xiàn)PN)融合淺層細(xì)節(jié)特征和深層豐富語義特征。使用ROI Align替換ROI Pooling進(jìn)行區(qū)域特征聚集,增強(qiáng)目標(biāo)特征表達(dá)。最后利用多層級聯(lián)網(wǎng)絡(luò)對目標(biāo)區(qū)域進(jìn)行邊框回歸和分類,完成病斑計(jì)數(shù)任務(wù)。在梨葉病斑圖像測試中,模型的各類病斑平均精確率均值(Mean average precision,mAP)達(dá)89.4%,檢測單幅圖像平均耗時(shí)為0.347s。結(jié)果表明,模型能夠有效地從梨葉片病害圖像中檢測出多類病斑目標(biāo),尤其對葉片炭疽病斑檢測效果提升顯著;不同種類梨葉片病害病斑計(jì)數(shù)值與真實(shí)值回歸實(shí)驗(yàn)決定系數(shù)R2均大于0.92,表明模型病斑計(jì)數(shù)準(zhǔn)確率較高。

    Abstract:

    In order to improve the efficiency and accuracy of pear leaf disease degree diagnosis, a pear leaf disease spot counting method was proposed based on global context Cascade region-based convolutional neural network (GC-Cascade R-CNN). The backbone feature extraction network of the model was embedded in a global context feature model (GC-Model), to establish effective longrange dependency and channel dependency for enhancing the feature information. The model fused shallow detail features and deep rich semantic features by feature pyramid networks (FPN). ROI Align was used to replace ROI Pooling for regional feature aggregation and enhance the target feature representation. Bounding box regression and classification of target regions were performed by using multilayer Cascade networks to complete the disease spot counting task. In the test of pear leaf disease images, the mean average precision (mAP) of the model reached 89.4% for all types of disease spots, and a single image processing average time of 0.347s, ensuring real-time operation while improving detection accuracy. The results showed that the model could effectively detect multiple types of disease spot targets from pear leaf disease images, especially for the detection of anthracnose spots;and the coefficient of determination R2 of the regression of disease spot counting values and true values of different kinds of pear leaf diseases were all greater than 0.92, indicating that the model had high accuracy of disease spot counting. This study solved the difficulty of pear leaves disease degree diagnosis, and provided a new idea for the diagnosis of pear disease conditions and symptoms in automated agricultural production.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

薛衛(wèi),程潤華,康亞龍,黃新忠,徐陽春,董彩霞.基于GC-Cascade R-CNN的梨葉病斑計(jì)數(shù)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):237-245. XUE Wei, CHENG Runhua, KANG Yalong, HUANG Xinzhong, XU Yangchun, DONG Caixia. Pear Leaf Disease Spot Counting Method Based on GC-Cascade R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):237-245.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期: