亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜與集成學(xué)習(xí)的單粒玉米種子水分檢測(cè)模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0101004-03)、國(guó)家自然科學(xué)基金項(xiàng)目(61807001)和北京工商大學(xué)2021年研究生科研能力提升計(jì)劃項(xiàng)目


Detection Model of Moisture Content of Single Maize Seed Based on Hyperspectral Image and Ensemble Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為建立單粒玉米種子水分含量的高精度檢測(cè)模型,制備了80份不同水分含量的玉米種子樣本。針對(duì)玉米種胚朝上和種胚朝下分別進(jìn)行高光譜反射圖像采集,每份樣本取樣100粒,波長(zhǎng)范圍為968.05~2575.05nm。采用PCA快速提取單粒種子光譜,經(jīng)多元散射校正預(yù)處理后,分別采用隨機(jī)森林(RF)和AdaBoost算法建立單粒種子水分檢測(cè)模型,并集成兩種算法特征提出基于加權(quán)策略的改進(jìn)RF用于單粒種子水分含量建模。利用單粒玉米種子胚朝上的光譜信息建立的改進(jìn)RF模型訓(xùn)練集相關(guān)系數(shù)R為0.969,訓(xùn)練集均方根誤差(RMSEC)為0.094%,測(cè)試集R為0.881,測(cè)試集均方根誤差(RMSEP)為0.404%;利用單粒玉米種子胚朝下的光譜信息建立的改進(jìn)RF模型訓(xùn)練集R為0.966,RMSEC為0.100%,測(cè)試集R為0.793,RMSEP為0.544%。實(shí)驗(yàn)結(jié)果表明:改進(jìn)RF的泛化能力和預(yù)測(cè)精度明顯優(yōu)于RF和AdaBoost算法;種胚朝上的單粒玉米種子水分含量檢測(cè)模型優(yōu)于種胚朝下的模型。高光譜檢測(cè)技術(shù)結(jié)合集成學(xué)習(xí)算法建立的玉米種子水分檢測(cè)模型預(yù)測(cè)精度高,穩(wěn)健性好。

    Abstract:

    In order to establish a high-precision detection model of moisture content in single maize seed, totally 80 maize seed samples with different moisture content were prepared. Hyperspectral reflection image acquisition was carried out for maize embryo up and embryo down respectively. Totally 100 grains were sampled for each sample, and the wavelength range was 968.05~2575.05nm. PCA was used to quickly extract the spectrum of a single seed. After multiple scattering correction pretreatment, the random forest (RF) and AdaBoost algorithm were used to establish the moisture content detection model of a single seed, and the characteristics of the two algorithms were integrated. An improved RF based on weighting strategy was proposed to model the moisture content of a single seed. The improved RF model was established by using the upward spectral information of single maize seed embryo. The correlation coefficient R of the training set was 0.969, the root mean square error RMSEC of the training set was 0.094%, the test set R was 0.881, and the root mean square error RMSEP of the test set was 0.404%. The improved RF model was established by using the downward spectral information of single maize seed embryo. The training set R was 0.966, RMSEC was 0.100%, the test set R was 0.793 and RMSEP was 0.544%. The experimental results showed that the generalization ability and prediction accuracy of the improved RF were significantly better than that of RF and AdaBoost algorithms. The moisture content detection model of single maize seed with seed embryo upward was better than that with seed embryo downward. The maize seed moisture detection model established by hyperspectral detection technology combined with integrated learning algorithm had high prediction accuracy and good robustness.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吳靜珠,張樂(lè),李江波,劉翠玲,孫曉榮,余樂(lè).基于高光譜與集成學(xué)習(xí)的單粒玉米種子水分檢測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):302-308. WU Jingzhu, ZHANG Le, LI Jiangbo, LIU Cuiling, SUN Xiaorong, YU Le. Detection Model of Moisture Content of Single Maize Seed Based on Hyperspectral Image and Ensemble Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):302-308.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-06-22
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2022-05-10
  • 出版日期: