亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多語義特征的農(nóng)業(yè)短文本匹配技術(shù)
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2019YFD1101105)、北京市科技計劃項目(Z191100004019007)、國家自然科學(xué)基金項目(61871041)和國家大宗蔬菜產(chǎn)業(yè)技術(shù)體系崗位專家項目(CARS-23-C06)


Agricultural Short Text Matching Technology Based on Multi-semantic Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    “中國農(nóng)技推廣APP”農(nóng)業(yè)問答社區(qū)存在提問數(shù)據(jù)量大、規(guī)范性差、涉及面廣、噪聲多、特征稀疏等影響文本語義匹配的問題,為了改善農(nóng)業(yè)提問數(shù)據(jù)相似性判斷的性能,提出了融合多語義特征的文本匹配模型Co_BiLSTM_CNN,從深度語義、詞語共現(xiàn)、最大匹配度3個層面提取短文本特征,并利用共享參數(shù)的孿生網(wǎng)絡(luò)結(jié)構(gòu),分別運用雙向長短期記憶網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)和密集連接網(wǎng)絡(luò)構(gòu)建文本匹配模型。試驗結(jié)果表明,該模型可以更全面提取文本特征,文本相似性判斷的正確率達(dá)94.15%,與其他6種模型相比,文本匹配效果優(yōu)勢明顯。

    Abstract:

    With the development of information technology, agricultural information consultant service based on mobile Internet has become an important part of agro-technical extension system. More than ten million questions in all have been collected by agro-technical extension Q&A community. With the continuous popularization of Q&A community, answering questions manually only by agricultural experts and technicians can neither follow the rapid growth of the questions nor meet the needs of farmers who want to be answered quickly and accurately. Agricultural intelligent Q&A is one of the effective ways to solve the problem. High quality text matching for new questions is the key technology. The accuracy of text matching is limited by the characteristics of agricultural text, such as large amount of data, poor standardization, wide range, much noise, and sparse features. In order to improve the accuracy, the deep semantics, word co-occurrence and maximum matching degree of agricultural short text were extracted and Co_BiLSTM_CNN model composed of bi-long short-term memory, convolutional neural networks, dense networks and Siamese network of shared parameters, was proposed to extract multi-semantic features. The precision, recall, F1, accuracy and time complexity were selected as evaluation indexes to comprehensively measure the performance of the model. The experimental results showed that the model could extract text features more comprehensively, with an accuracy of 94.15%. Compared with the other six text matching models, the experimental results showed obvious advantages.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

金寧,趙春江,吳華瑞,繆祎晟,王海琛,楊寶祝.基于多語義特征的農(nóng)業(yè)短文本匹配技術(shù)[J].農(nóng)業(yè)機械學(xué)報,2022,53(5):325-331. JIN Ning, ZHAO Chunjiang, WU Huarui, MIAO Yisheng, WANG Haichen, YANG Baozhu. Agricultural Short Text Matching Technology Based on Multi-semantic Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):325-331.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期: