亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v4網(wǎng)絡(luò)的馬鈴薯自動育苗葉芽檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

天津市自然科學(xué)基金項目(18JCYBJC88300、18JCYBJC88400)


Potato Leaf Bud Detection Method Based on Improved YOLO v4 Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高馬鈴薯幼苗葉芽檢測識別的準(zhǔn)確率,提高自動育苗生產(chǎn)系統(tǒng)的工作效率,提出了基于YOLO v4網(wǎng)絡(luò)的改進(jìn)識別網(wǎng)絡(luò)。將YOLO v4特征提取部分CSPDarknet53中的殘差塊(Residual Block)替換為Res2Net,并采用深度可分離卷積操作減小計算量。由此,在增大卷積神經(jīng)網(wǎng)絡(luò)感受野的同時,能夠獲得葉芽更加細(xì)小的特征信息,減少馬鈴薯葉芽的漏檢率。設(shè)計了基于擴(kuò)張卷積的空間特征金字塔(D-SPP模塊),并嵌入和替換到特征提取部分的3個特征層輸出中,用于提高馬鈴薯葉芽目標(biāo)識別定位的準(zhǔn)確性。采用消融實驗對改進(jìn)策略的有效性進(jìn)行了驗證分析。實驗結(jié)果表明,改進(jìn)的識別網(wǎng)絡(luò)對馬鈴薯葉芽檢測的精確率為95.72%,召回率為94.91%,綜合評價指標(biāo)F1值為95%,平均精確率為96.03%。與Faster R-CNN、YOLO v3、YOLO v4網(wǎng)絡(luò)相比,改進(jìn)的識別網(wǎng)絡(luò)具有更好的識別性能,從而可有效提高馬鈴薯自動育苗生產(chǎn)系統(tǒng)的工作效率。

    Abstract:

    In order to improve the precision of the detection and recognition of the potato seedling leaf bud and improve the efficiency of the automatic seedling production system, an improved recognition network based on the YOLO v4 network was proposed. The residual block in the feature extraction part CSPDarknet53 was replaced with Res2Net, and the depthwise separable convolution was used to reduce the computation. In this way, the receptive field of the convolutional neural network can be enlarged, the finer feature information of leaf bud can be got, and the missed detection rate of potato leaf bud can be reduced. Furthermore, a spatial feature pyramid (D-SPP module) based on dilated convolution was designed and embedded in the output of the three feature layers of the feature extraction part to improve the recognition and localization precision of potato leaf bud target. The ablation experiment was used to verify the effectiveness of the improved strategies. The experiment results showed that the recognition precision, the recall rate, the comprehensive evaluation index F1 value and the average precision of the improved network were 95.72%, 94.91%, 95% and 96.03% respectively. Comparing with the common networks such as Faster R-CNN, YOLO v3 and YOLO v4, the improved network had the better recognition performances, thus the production efficiency automatic seedling production system can be enhanced.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

修春波,孫樂樂.基于改進(jìn)YOLO v4網(wǎng)絡(luò)的馬鈴薯自動育苗葉芽檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(6):265-273. XIU Chunbo, SUN Lele. Potato Leaf Bud Detection Method Based on Improved YOLO v4 Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(6):265-273.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-19
  • 出版日期:
文章二維碼