亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜和集成學(xué)習(xí)的庫(kù)爾勒香梨黑斑病潛育期診斷
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

塔里木大學(xué)現(xiàn)代農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目(TDNG2020102)、河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20327111D)、河北省省屬高等學(xué)校基本科研業(yè)務(wù)費(fèi)研究項(xiàng)目(KY202002)和國(guó)家自然科學(xué)基金項(xiàng)目(31960498)


Diagnosis of Korla Pear Black Spot Disease in Incubation Period Based on Hyperspectral Imaging and Ensemble Learning Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    黑斑病是危害庫(kù)爾勒香梨的真菌病害之一。若在黑斑病癥狀顯證之前實(shí)現(xiàn)早期診斷,對(duì)于防止病害蔓延、減少經(jīng)濟(jì)損失具有重要的意義。結(jié)合高光譜成像技術(shù)和Stacking集成學(xué)習(xí)算法,構(gòu)建了香梨黑斑病早期快速診斷模型。獲取了健康、潛育期、輕度發(fā)病和重度發(fā)病的黑斑病庫(kù)爾勒香梨的高光譜圖像,提取感興趣區(qū)域內(nèi)的平均光譜,經(jīng)標(biāo)準(zhǔn)正態(tài)變量變換、一階導(dǎo)數(shù)、二階導(dǎo)數(shù)及組合預(yù)處理后,利用主成分分析進(jìn)行數(shù)據(jù)降維。然后,以K最近鄰法(KNN)、最小二乘支持向量機(jī)(LS-SVM)和隨機(jī)森林(RF)算法為基學(xué)習(xí)器,以LS-SVM為元學(xué)習(xí)器,構(gòu)建了黑斑病病害程度的Stacking集成學(xué)習(xí)預(yù)測(cè)模型。結(jié)果表明,隨著病害程度加深,光譜反射率整體呈下降趨勢(shì),且存在顯著性差異,為分類模型的建立提供了理論依據(jù)。所建模型對(duì)健康和不同病害程度黑斑病庫(kù)爾勒香梨的總體判別準(zhǔn)確率為98.28%,對(duì)潛育期香梨的判別準(zhǔn)確率為100%。與利用單一分類器建模結(jié)果相比,總體判別準(zhǔn)確率和潛育期香梨判別準(zhǔn)確率分別上升5.18、23.08個(gè)百分點(diǎn)。結(jié)果證明,Stacking集成學(xué)習(xí)具有較強(qiáng)的特征學(xué)習(xí)能力,將其與高光譜成像技術(shù)結(jié)合,能實(shí)現(xiàn)庫(kù)爾勒香梨黑斑病潛育期的識(shí)別。該結(jié)果為庫(kù)爾勒香梨黑斑病的早期快速診斷和發(fā)病過(guò)程的實(shí)時(shí)監(jiān)測(cè)提供了一種新的方法。

    Abstract:

    Black spot is one of the fungal diseases of Korla pear. It is of great significance to realize early diagnosis of black spot disease before the symptoms are evident, as it can prevent the spread of the disease and reduce the economic loss. Hyperspectral imaging technology was combined with Stacking ensemble learning algorithm to construct early and rapid diagnosis model of Korla pear black spot. Hyperspectral images of healthy, incubation period, mildly diseased and severely diseased Korla pear were obtained, and the average spectra in the region of interest were extracted. After pretreated by standard normal variable transformation, the first derivative, second derivative and their combinations, principal component analysis was implemented to reduce the data dimension. Then, the Stacking ensemble learning prediction model for black spot disease was constructed with K-nearest neighbor method (KNN), least squares-support vector machine (LS-SVM) and random forest (RF) algorithm as the base learner and LS-SVM as the meta-learner. The results showed that with the deepening of the disease degree, the reflectance spectra showed a downward trend, significant difference was observed, which provided a theoretical basis for the establishment of classification models. The total classification accuracy of healthy and different disease degrees of Korla pear was 98.28%, and the classification accuracy for incubation period pear was 100%. Compared with the results using single classifier, the classification accuracy for all pear and incubation period pear was increased by 5.18 and 23.08 percentage points, respectively. The results showed that Stacking ensemble learning had strong feature learning ability, and its combination with hyperspectral imaging technology can realize the recognition of incubation period of black spot in Korla pear. The results can provide a method for the early diagnosis and real-time monitoring of black spot of Korla pear.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉媛媛,張凡,師琪,馬倩云,王文秀,孫劍鋒.基于高光譜和集成學(xué)習(xí)的庫(kù)爾勒香梨黑斑病潛育期診斷[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(6):295-303. LIU Yuanyuan, ZHANG Fan, SHI Qi, MA Qianyun, WANG Wenxiu, SUN Jianfeng. Diagnosis of Korla Pear Black Spot Disease in Incubation Period Based on Hyperspectral Imaging and Ensemble Learning Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(6):295-303.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-24
  • 出版日期:
文章二維碼