亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于云平臺和BFAST算法的地表變化檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1500203、2019YFC0507800)


Land Surface Change Detection Method Based on Cloud Platform and BFAST Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    準(zhǔn)確識別地表變化的時空信息,有助于探究地表自然環(huán)境和生態(tài)系統(tǒng)發(fā)展演變的規(guī)律,支撐相關(guān)的科研與行政管理工作。本文以河南某生態(tài)保護(hù)修復(fù)工程部分實(shí)施范圍為研究區(qū)域,基于Google Earth Engine(GEE)云平臺,以2013—2020年的98景Landsat8/OLI遙感影像作為數(shù)據(jù)源,應(yīng)用Breaks for additive season and trend(BFAST)算法對地表變化進(jìn)行了信息提取和制圖。首先基于GEE云平臺對Landsat8/OLI地表反射率數(shù)據(jù)集進(jìn)行調(diào)用和預(yù)處理,基于CFMask算法對遙感數(shù)據(jù)集進(jìn)行云影掩膜,開展光譜指數(shù)(植被指數(shù)NDVI)的計(jì)算以及時間序列數(shù)據(jù)集的構(gòu)建。其次基于時序數(shù)據(jù)集與BFAST算法構(gòu)建由趨勢項(xiàng)、季節(jié)項(xiàng)和殘差項(xiàng)組成的廣義線性回歸模型,通過最小二乘法求解模型中的未知參數(shù)集,以此進(jìn)一步構(gòu)建時序擬合模型,而后基于殘差的Moving sums(MOSUM)方法對時序結(jié)構(gòu)變化進(jìn)行檢測。最后從檢測結(jié)果中抽取像元樣點(diǎn),通過與Google Earth高分辨率影像數(shù)據(jù)疊置和目視解譯,開展結(jié)果驗(yàn)證和精度評價。結(jié)果表明,本文提出的方法在研究區(qū)的時序地表變化檢測中具有較高的檢測精度(總體精度為83.7%,2018—2020年分年度檢測結(jié)果精度分別為86.5%、80.7%、87.7%)。本文提出的方法是遙感大數(shù)據(jù)庫構(gòu)建、地表生態(tài)信息近實(shí)時變化擾動識別和監(jiān)測等技術(shù)的一種基礎(chǔ)方法,能夠?qū)量臻g生態(tài)保護(hù)修復(fù)調(diào)查監(jiān)測和評估預(yù)警等工作提供技術(shù)支撐和決策支持。

    Abstract:

    Accurately identifying the spatio-temporal information of surface changes will help to explore the law of development and evolution of surface natural environment and ecosystems, and support related scientific research and administrative management. Taking part of the implementation area of an ecological protection and restoration project in Henan Province as the study area, based on the Google Earth Engine (GEE) cloud platform, using 98view Landsat8/OLI remote sensing images from 2013 to 2020 as the data source, and the Breaks for additive season and trend (BFAST) algorithm theory was applied to extract and map information on land surface changes. The methodological experimental process included: firstly, the Landsat8/OLI land surface reflectance dataset was called and pre-processed based on GEE, the cloud shadow masking of the remote sensing dataset based on CFMask algorithm, the calculation of the spectral index (vegetation index NDVI) and the construction of the time series dataset. Secondly, based on the time series data set and the BFAST algorithm theory, a generalized linear regression model consisted of trend terms, seasonal terms and residual terms was constructed, and the unknown parameter set in the model was solved by the least square method, so as to further construct a time series fitting model and detect time-series structure changes in near real-time based on the Moving sums of the residuals (MOSUM) method. Finally, image element sample points were extracted from the detection results, and the results were validated and evaluated in terms of accuracy by overlaying with Google Earth high-resolution image data and visual interpretation. The analysis of the results showed that the method proposed had high detection accuracy in the detection of time-series land surface ecological changes in the study area (83.7% overall accuracy, 86.5%, 80.7% and 87.7% accuracy of the detection results in the sub-years from 2018 to 2020, respectively) in the detection of time-series land surface changes in the study area. Overall, the method proposed was a basic method for remote sensing big database construction, near real-time disturbance identification and monitoring of land surface ecological information and other technologies, which can provide technical support and decision-making support for the investigation and monitoring of ecological protection and restoration in national land space and assessment and early warning.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

周旭,陳元鵬,劉巖濤,周妍,李少帥,王力.基于云平臺和BFAST算法的地表變化檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(7):179-186. ZHOU Xu, CHEN Yuanpeng, LIU Yantao, ZHOU Yan, LI Shaoshuai, WANG Li. Land Surface Change Detection Method Based on Cloud Platform and BFAST Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):179-186.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-02-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-10
  • 出版日期:
文章二維碼