亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

異常水培生菜自動(dòng)分選系統(tǒng)設(shè)計(jì)與試驗(yàn)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018TSCXL-NY-05-04)和國(guó)家外國(guó)專(zhuān)家局高端外國(guó)專(zhuān)家引進(jìn)計(jì)劃項(xiàng)目(G20200027075)


Design and Experiment of Sorting System for Abnormal Hydroponic Lettuce
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決水培生菜包裝前分選機(jī)械化程度低、分選任務(wù)重的問(wèn)題,結(jié)合深度學(xué)習(xí)方法設(shè)計(jì)了一種異常水培生菜自動(dòng)分選系統(tǒng)。該系統(tǒng)由信息感知、信息處理以及分選動(dòng)作執(zhí)行3個(gè)子系統(tǒng)組成。根據(jù)水培生菜異常葉片與正常葉片間差異性進(jìn)行水培生菜分類(lèi),采用從下向上的三攝像頭配合拍攝方式進(jìn)行圖像信息感知,并基于語(yǔ)義分割DeepLabV3+深度學(xué)習(xí)網(wǎng)絡(luò)實(shí)現(xiàn)水培生菜圖像信息實(shí)時(shí)處理,其處理性能為:平均聯(lián)合交并比達(dá)83.26%,像素精度為99.24%,單幅圖像處理時(shí)間為(193.4±4)ms。為便于實(shí)現(xiàn)異常水培生菜分選,基于水培生菜的表型及采收模式,設(shè)計(jì)了一種托架式異常水培生菜分選執(zhí)行子系統(tǒng),并以橫向支撐桿角度、縱向支撐桿角度和步進(jìn)電機(jī)轉(zhuǎn)速為試驗(yàn)因素,以分選動(dòng)作執(zhí)行子系統(tǒng)的分選成功率為評(píng)價(jià)指標(biāo),設(shè)計(jì)二次正交旋轉(zhuǎn)組合試驗(yàn)。建立了各因素與指標(biāo)間回歸數(shù)學(xué)模型,運(yùn)用Design-Expert軟件的多目標(biāo)優(yōu)化算法進(jìn)行參數(shù)優(yōu)化。獲得參數(shù)最優(yōu)組合為:橫向支撐桿角度146°、縱向支撐角度150°、步進(jìn)電機(jī)轉(zhuǎn)速11r/min。依據(jù)參數(shù)最優(yōu)組合進(jìn)行性能試驗(yàn),得到分選動(dòng)作執(zhí)行子系統(tǒng)的分選成功率為98%,異常水培生菜自動(dòng)分選系統(tǒng)的分選成功率為95%,滿(mǎn)足生菜冷藏運(yùn)輸技術(shù)標(biāo)準(zhǔn)要求。

    Abstract:

    To address problems of low mechanization level and labor-intensive sorting tasks before packaging of hydroponic lettuce, an automatic sorting system for abnormal hydroponic lettuce was designed in combination with the deep learning method. The automatic sorting system was composed of an information perception sub-system, an information processing sub-system, and a sorting action execution sub-system. Hydroponic lettuce classification was based on the difference between abnormal and normal leaves. Three cameras from bottom to top were used to capture images. Real-time processing of hydroponic lettuce images was realized based on semantic segmentation DeepLabV3+. The image segmentation model had mIoU of 83.26%, PA of 99.24% and image processing velocity of (193.4±4)ms/frame. To realize sorting of abnormal hydroponic lettuce, a bracket-type hydroponic lettuce sorting sub-system was designed based on phenotype and harvesting mode of the hydroponic lettuce. Quadratic orthogonal rotational-combinational experiments were designed. Experiments on factoring in horizontal and longitudinal support rod angles and stepping motor speed were conducted to obtain the highest sorting success rate. Regression mathematical models between factors and index were multi-objectively optimized by using Design-Expert software. Optimal combination of parameters was obtained, including the horizontal support rod angle of 146°, the longitudinal support angle of 150°, and the stepping motor speed of 11r/min. Perform test was carried out according to the optimal combination of parameters. The sorting success rate of the sorting action execution sub-system was 98%, and the sorting success rate of the abnormal hydroponic lettuce automatic sorting system was 95%, which met technical standard requirements of lettuce refrigerated transportation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

武振超,楊睿哲,王文奇,傅隆生,崔永杰,張昭.異常水培生菜自動(dòng)分選系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(7):282-290. WU Zhenchao, YANG Ruizhe, WANG Wenqi, FU Longsheng, CUI Yongjie, ZHANG Zhao. Design and Experiment of Sorting System for Abnormal Hydroponic Lettuce[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):282-290.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2022-07-10
  • 出版日期:
文章二維碼