亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于3D視覺的番茄授粉花朵定位方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

寧夏回族自治區(qū)重點(diǎn)研發(fā)項(xiàng)目(2018BBF02024、2018BBF02011)


Positioning Method of Tomato Pollination Flowers Based on 3D Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了給設(shè)施番茄授粉機(jī)器人授粉提供可靠的定位技術(shù),提出了一種基于3D視覺的番茄花朵定位方法。采用RGB-D結(jié)構(gòu)光相機(jī)快速獲取溫室內(nèi)番茄植株的彩色圖和深度圖信息,通過YOLO v4 (You only look once)神經(jīng)網(wǎng)絡(luò)對(duì)植株上番茄花束進(jìn)行目標(biāo)檢測(cè),并提取出授粉花束在圖像中的二維區(qū)域;使用主動(dòng)對(duì)齊方式結(jié)合PCL進(jìn)行彩色圖像和深度圖像的粗對(duì)齊,利用區(qū)域內(nèi)色系單視角線性遍歷方法對(duì)提取的花束區(qū)域進(jìn)行精配準(zhǔn),獲得番茄花束的空間高精度點(diǎn)云信息;再使用統(tǒng)計(jì)濾波法剔除點(diǎn)云信息離群點(diǎn)后,結(jié)合雙向均值法計(jì)算花束3D box的授粉質(zhì)心坐標(biāo)。定位試驗(yàn)結(jié)果表明,該方法在溫室環(huán)境中能成功對(duì)花束進(jìn)行識(shí)別定位,神經(jīng)網(wǎng)絡(luò)平均檢測(cè)精度達(dá)97.67%,完成單幅圖像花束提取時(shí)間為14.95ms,算法獲取授粉質(zhì)心坐標(biāo)的平均時(shí)間約為300ms。后期在溫室內(nèi)驗(yàn)證,在花束被遮擋小于80%時(shí),算法能夠?qū)Ψ鸦ǘ溥M(jìn)行精準(zhǔn)定位,并成功執(zhí)行授粉動(dòng)作,為番茄授粉機(jī)器人提供了一種新的授粉點(diǎn)定位方法。

    Abstract:

    In order to provide reliable positioning technical guidance for the implementation of pollination by the facility tomato pollination robot, a method for positioning tomato pollination flowers was proposed based on 3D vision. Firstly, the RGB-D structured light camera was used to quickly obtain the color map and depth map information of the tomato plants in the glass greenhouse, through the fast small target detection YOLO v4 (You only look once) neural network to detect the tomato bouquet on the plant, and extract the two-dimensional area of the pollination bouquet. Then an active alignment method was used in conjunction with PCL to roughly align the RGB map and the depth map. In the RGB image, the bouquet area was filled with yellow flowers. The color system of the pixels in the prediction frame was judged, the non-flower pixels was removed, and the precise alignment of the point cloud of the bouquet area was performed. In order to obtain the high-precision point cloud information of the spatial tomato bouquet, a single-view linear traversal method of the color system within the region was used to perform fine registration on the extracted bouquet region, in the three-dimensional point cloud collection, the double-plane centroid algorithm was used to obtain the spatial point cloud coordinates of the target bouquet (x, y, z). Finally, after the group filtering method denoised the point cloud information, the two-way average method was combined to calculate the pollination centroid coordinates of the bouquet 3D box. The positioning test results showed that the method can successfully identify and locate the bouquet in the greenhouse environment, the average detection accuracy of the neural network was 97.67%, the extraction time of a single image bouquet was 14.95ms, the time and energy consumption of the algorithm to obtain the pollination centroid coordinates was about 300ms. In the actual verification process, in the absence of strong light, the algorithm can basically realize the robot's positioning problem of tomato flowers in the greenhouse, and provide a method for the tomato pollination robot to locate and solve the pollination point.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

文朝武,龍潔花,張宇,郭文忠,林森,梁曉婷.基于3D視覺的番茄授粉花朵定位方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(8):320-328. WEN Chaowu, LONG Jiehua, ZHANG Yu, GUO Wenzhong, LIN Sen, LIANG Xiaoting. Positioning Method of Tomato Pollination Flowers Based on 3D Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):320-328.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-10-14
  • 出版日期:
文章二維碼