亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于PSA-YOLO網(wǎng)絡(luò)的蘋果葉片病斑檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2020YFD1100601)


Apple Leaf Lesion Detection Based on PSA-YOLO Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高YOLOv4目標(biāo)檢測算法對蘋果葉片小型病斑的檢測性能,提出了一種PSA(金字塔壓縮注意力)-YOLO算法。在CSPDarknet53的基礎(chǔ)上融合了Focus結(jié)構(gòu)和PSA機制,并采用網(wǎng)絡(luò)深度減小策略,構(gòu)建了參數(shù)量小、精確度高的PSA-CSPDarknet-1輕量化主干網(wǎng)絡(luò)。其次在網(wǎng)絡(luò)頸部,搭建了空間金字塔卷積池化模塊,用極小的計算代價增強了對深層特征圖的空間信息提取能力,并采用α-CIoU損失函數(shù)作為邊界框損失函數(shù),提高網(wǎng)絡(luò)對高IoU閾值下目標(biāo)的檢測精度。根據(jù)實驗結(jié)果,PSA-YOLO網(wǎng)絡(luò)在蘋果葉片病斑識別任務(wù)中的AP50達(dá)到88.2%。COCO AP@[0.5∶0.05∶0.95]達(dá)到49.8%,比YOLOv4提升3.5個百分點。網(wǎng)絡(luò)對于小型病斑的特征提取能力提升幅度更大,小型病斑檢測AP比YOLOv4提升3.9個百分點。在單張NVIDIA GTX TITAN V顯卡上的實時檢測速度達(dá)到69幀/s,相較于YOLOv4網(wǎng)絡(luò)提升13幀/s。

    Abstract:

    In order to improve the detection performance of YOLOv4 object detection algorithm for small apple leaf lesions, a PSA-YOLO network with low computational cost and high accuracy was proposed, which integrated a Focus layer and the pyramid squeeze attention block in the CSPDarknet, and the strategy of network depth reduction was adopted. Finally, the PSA-CSPDarknet-1 was built on the basis of CSPDarknet53. The experimental results showed that the computational complexity of PSA-CSPDarknet-1 was reduced by 30.4% compared with the CSPDarknet53 and the detection accuracy of the network for small lesions (covering area less than 32 pixels×32 pixels) was improved by 2.9 percentage points. In the neck, a spatial pyramid convolution and pooling module was built to enhance multi-scale information extraction in spatial dimensions with a small computational cost, and α-CIoU loss function for the bounding box was used to improve the detection accuracy of bounding boxes for improving the detection accuracy of lesions under the high IoU threshold. According to the experimental results, the proposed PSA-YOLO network achieved 88.2% AP50 and it achieved 49.8% COCO AP@[0.5∶0.05∶0.95] in the apple leaf lesion dataset, which was 3.5 percentage points higher than that of YOLOv4. At the same time, the feature extraction ability of the network for small lesions was more improved, and APS was 3.9 percentage points higher than that of YOLOv4, respectively. The detection speed on a single NVIDIA GTX TITAN V reached 69 frames per second, which was 13 frames per second faster than that of YOLOv4.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

晁曉菲,池敬柯,張繼偉,王孟杰,陳堯,劉斌.基于PSA-YOLO網(wǎng)絡(luò)的蘋果葉片病斑檢測[J].農(nóng)業(yè)機械學(xué)報,2022,53(8):329-336. CHAO Xiaofei, CHI Jingke, ZHANG Jiwei, WANG Mengjie, CHEN Yao, LIU Bin. Apple Leaf Lesion Detection Based on PSA-YOLO Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):329-336.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-05-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-06-07
  • 出版日期:
文章二維碼