亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于顏色掩膜網(wǎng)絡(luò)和自注意力機(jī)制的葉片病害識(shí)別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金重大研究計(jì)劃項(xiàng)目(91746207)和國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFC08)


Crop Diseases Recognition Method via Fusion Color Mask and Self-attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了提取到更加準(zhǔn)確、豐富的葉片病斑的顏色特征和空間特征,解決病害嚴(yán)重程度細(xì)粒度分類粗糙、識(shí)別準(zhǔn)確率低等問題,提出一種融合顏色掩膜網(wǎng)絡(luò)和自注意力機(jī)制(Fusion color mask and self-attention network, FCMSAN)的病害識(shí)別方法。FCMSAN由顏色掩膜網(wǎng)絡(luò)(Color mask network,CMN)和融合通道自適應(yīng)的自注意力網(wǎng)絡(luò)(Channel adaptive self-attention network, CASAN)構(gòu)成。CMN通過學(xué)習(xí)葉片病斑顏色區(qū)域信息提高模型提取顏色特征的能力;CASAN能夠提取全局范圍內(nèi)的病斑特征,同時(shí)加入病斑的位置特征和通道自適應(yīng)特征,可以精確、全面定位葉片病斑區(qū)域。最后通過特征轉(zhuǎn)換融合模塊(Transfer fusion layer,TFL)將CMN和CASAN進(jìn)行融合。經(jīng)實(shí)驗(yàn)證明,F(xiàn)CMSAN在61類農(nóng)作物病蟲害細(xì)粒度識(shí)別中,Top-1的分類準(zhǔn)確率達(dá)到87.97%,平均F1值達(dá)到84.48%。最后通過可視化分析,驗(yàn)證了本文方法在病害識(shí)別中的有效性。

    Abstract:

    To reduce the loss of crop diseases, a large number of chemicals are used for disease control. However, due to the untimely and inaccurate judgment of the disease, chemical agents are abused, which also has a great impact on the ecological environment and food safety. Therefore, it is urgent to develop accurate crop disease recognition based on images. In the image recognition of crop diseases, the shape, region, and color of leaf spots are the main indexes to distinguish different types of diseases. In order to extract more accurate and rich color features and spatial features of leaf spots, and solve the problems of coarse fine-grained classification of disease severity and low recognition accuracy, a fusion color mask and self-attention network (FCMSAN) was proposed. FCMSAN was composed of a color mask network (CMN) and a channel adaptive self-attention network (CASAN). CMN can improve the ability of color feature extraction by learning the color features of leaf spots. CASAN can extract the disease spot features in the global scope and add the location features and channel adaptive features of the disease spot, which can locate the leaf disease spot area accurately and comprehensively. Finally, the outputs of CMN and CASAN were fused by transfer fusion layer (TFL). The experimental results showed that the classification Top-1 accuracy reached 87.97% and the average F1 value can reach 84.48% in the fine-grained identification of 61 types of crop diseases. Finally, the effectiveness of the proposed method for crop disease recognition was verified by visualization experiments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

于明,李若曦,閻剛,王巖,王建春,李揚(yáng).基于顏色掩膜網(wǎng)絡(luò)和自注意力機(jī)制的葉片病害識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(8):337-344. YU Ming, LI Ruoxi, YAN Gang, WANG Yan, WANG Jianchun, LI Yang. Crop Diseases Recognition Method via Fusion Color Mask and Self-attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):337-344.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-08-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-10-25
  • 出版日期:
文章二維碼