亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多維度特征和LightGBM的大閘蟹質(zhì)量估算方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省農(nóng)業(yè)科技自主創(chuàng)新基金項(xiàng)目(CX(19)1003)、寧波市公益科技項(xiàng)目(202002N3034)和煙臺(tái)市校地融合發(fā)展項(xiàng)目(2020XDRHXMXK07)


Chinese Mitten Crab Weight Estimation Method Based on Multi-dimensional Features and LightGBM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    大閘蟹是我國特有的名優(yōu)水產(chǎn)養(yǎng)殖品種,其質(zhì)量既是確定投喂量的重要依據(jù),亦是評(píng)判其生長狀況、品質(zhì)等級(jí)的重要指標(biāo)。為了準(zhǔn)確估算蟹體質(zhì)量,提出一種基于多維度特征和輕量梯度提升機(jī)(Light gradient boosting machine,LightGBM)的大閘蟹質(zhì)量估算方法。首先通過相機(jī)獲取蟹體圖像,其次采用圖像處理技術(shù)對(duì)圖像進(jìn)行分割以獲取背甲圖像,然后提取背甲二值圖像的幾何特征構(gòu)成形狀特征(Shape features,SF);提取不同顏色空間背甲圖像的各通道分量值構(gòu)成顏色特征(Color features,CF),并采用標(biāo)定法計(jì)算特征值;最后采用基于LightGBM的方法預(yù)測(cè)大閘蟹質(zhì)量。本文根據(jù)色澤表征其發(fā)育狀況,提取背甲顏色特征與形狀特征構(gòu)成多維度特征,解決單一形狀特征導(dǎo)致預(yù)測(cè)精度不高的問題;提取背甲輪廓比值作為形狀特征,有效降低隨機(jī)調(diào)整相機(jī)高度對(duì)特征值穩(wěn)定性的影響;在真實(shí)數(shù)據(jù)集上進(jìn)行預(yù)測(cè),結(jié)果表明平均絕對(duì)誤差(MAE)為2.751g,均方根誤差(RMSE)為3.680g,決定系數(shù)R2為0.949。并與SF-LightGBM、SF3-LightGBM 、area-OLS、MF-BPNN和MF-SVM質(zhì)量估算方法進(jìn)行對(duì)比,本文方法的各評(píng)價(jià)指標(biāo)的性能均有較大幅度提升,能夠較準(zhǔn)確地估算出大閘蟹蟹體質(zhì)量。

    Abstract:

    Chinese mitten crab is a unique aquaculture species in China. Its weight is not only an important basis for determining the feeding amount, but also an important indicator for judging its growth status and quality. Taking Chinese mitten crab as the research object, a method for estimating its weight based on multi-dimensional features and light gradient boosting machine (LightGBM) was proposed. Firstly, image segmentation were carried out on these collected crab images to obtain the carapace images. Then the geometric features of the carapace binary image was extracted as shape features (SF), extracting each channel component value of carapace images in different color spaces as color features (CF), and feature values were calculated by the calibration method. Finally, the crab weight was estimated by the LightGBM algorithm. The color feature and shape feature were extracted to form multi-dimensional features to solve the problem of low prediction accuracy caused by a single shape feature. The shape feature consisted of different carapace contour ratios, which effectively reduced the impact on the stability of the feature value caused by the random adjustment of the camera height. The proposed Chinese mitten crab weight estimation method was tested on the real dataset with the mean absolute error (MAE) of 2.751g, the root mean square error (RMSE) of 3.680g and the coefficient of determination (R2) of 0.949. Furthermore, when compared with the SF-LightGBM, SF3-LightGBM, area-OLS, MF-BPNN and MF-SVM crab weight estimation methods, the performance of each evaluation metric of the proposed method was improved. The experimental results indicated that the proposed method can accurately estimate the Chinese mitten crab weight.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

段青玲,陳鑫,許冠華,樊宇星,張玉玲.基于多維度特征和LightGBM的大閘蟹質(zhì)量估算方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(8):353-360. DUAN Qingling, CHEN Xin, XU Guanhua, FAN Yuxing, ZHANG Yuling. Chinese Mitten Crab Weight Estimation Method Based on Multi-dimensional Features and LightGBM[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):353-360.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-09-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-17
  • 出版日期:
文章二維碼