亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

直線型植保無人機航姿UKF兩級估計算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省重點研發(fā)計劃項目(BE2018372)、江蘇省自然科學基金項目(BK20181443)和鎮(zhèn)江市重點研發(fā)計劃項目(NY2018001)


UKF Two-stage Estimation Algorithm for Heading and Attitude of Linear Plant Protection UAV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對直線型植保無人機航姿測量受磁場干擾嚴重、磁力計校準動態(tài)性能差、航姿估計精度低等問題,提出了一種基于磁力計實時校準的無人機航姿兩級解算方法。依據地磁場矢量變化小的特點,利用列文伯格-馬夸特(Levenberg-Marquardt,LM)算法和磁力計誤差模型,建立磁力計實時校準模型,實時計算磁力計誤差參數??紤]運動加速度、電機磁場以及環(huán)境磁場干擾,采用無跡卡爾曼濾波器(Unscented Kalman filter,UKF)融合陀螺儀和加速度計實現(xiàn)一級航姿估計,通過四元數精準解析出橫滾角和俯仰角姿態(tài)信息;然后融合磁力計實時校準數據和陀螺儀修正航向角完成二級航姿估計,最終實現(xiàn)無人機姿態(tài)和航向的精準估計。試驗結果表明,在外部磁場干擾高達30.97μT時,實時校準算法仍可快速計算出磁力計校準參數,模長均方根誤差為0.59μT,減小了航向觀測信息噪聲。本文的航姿測量系統(tǒng)姿態(tài)角均方根誤差不大于0.75°,航向角均方根誤差為1.40°,較互補濾波算法,姿態(tài)角精度提高約0.6%,航向角估計精度提高1.38°;動態(tài)飛行試驗中,姿態(tài)估計算法大幅減弱了磁干擾影響,航姿跟蹤準確,航向角快速收斂,穩(wěn)態(tài)精度更高。

    Abstract:

    Aiming at the problems of serious magnetic field interference, poor dynamic performance of magnetometer calibration and low accuracy of UAV attitude estimation, a two-stage heading and attitude estimation method based on real-time magnetometer calibration was proposed. According to the characteristics of small variation of geomagnetic field vector, the real-time calibration model of magnetometer was established by using Levenberg-Marquardt (LM) algorithm and magnetometer error model, and the error parameters of magnetometer were calculated in real time. Considering the disturbance of motion acceleration, motor magnetic field and environmental magnetic field, the unscented Kalman filter (UKF) was used to fuse gyroscope and accelerometer to realize the first-stage attitude estimation, and the attitude information of roll angle and pitch angle was accurately analyzed through quaternion. The second-stage attitude estimation combined the realtime calibration data of the magnetometer and the gyroscope to correct the heading angle, and finally realized the accurate estimation of the UAV attitude and heading. The test results showed that when the external magnetic field interference was up to 30.97μT, the real-time calibration algorithm can still quickly calculate the calibration parameters of the magnetometer, and the mode length root mean square error was 0.59μT, which reduced the noise of heading observation information. The root mean square error of the attitude angle of the attitude measurement system was no more than 0.75°, and the root mean square error of the heading angle was 1.40°. Compared with that of complementary filtering algorithm, the attitude angle accuracy was increased by 0.6°, and the heading angle estimation accuracy was improved by 1.38°. In the dynamic flight test, the attitude estimation algorithm greatly reduced the influence of magnetic interference, the attitude tracking was accurate, the heading angle converged quickly, and the steady-state accuracy was higher.

    參考文獻
    相似文獻
    引證文獻
引用本文

沈躍,孫志偉,沈亞運,張大海,錢鵬,劉慧.直線型植保無人機航姿UKF兩級估計算法[J].農業(yè)機械學報,2022,53(9):151-159. SHEN Yue, SUN Zhiwei, SHEN Yayun, ZHANG Dahai, QIAN Peng, LIU Hui. UKF Two-stage Estimation Algorithm for Heading and Attitude of Linear Plant Protection UAV[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):151-159.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-10-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼