亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于卷積神經(jīng)網(wǎng)絡(luò)的高分遙感影像耕地提取研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家科技獎后備項目培育計劃項目(20212AEI91011)和江西省水利科技項目(201922ZDKT08、202022YBKT20、202224ZDKT11、202123YBKT06)


Cultivated Land Extraction from High Resolution Remote Sensing Image Based on Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    高效精準(zhǔn)地提取遙感影像中的耕地對農(nóng)業(yè)資源監(jiān)測以及可持續(xù)發(fā)展具有重要意義,針對目前多數(shù)傳統(tǒng)全卷積神經(jīng)網(wǎng)絡(luò)(FCN)模型在提取耕地時存在重精度而輕效率的缺陷,本文建立基于FCN的輕量級耕地圖斑提取模型(LWIBNet模型),并結(jié)合數(shù)學(xué)形態(tài)學(xué)算法進行后處理,開展耕地圖斑信息的自動化提取研究。該LWIBNet模型汲取了輕量級卷積神經(jīng)網(wǎng)絡(luò)和U-Net模型的優(yōu)點,以Inv-Bottleneck模塊(由深度可分離卷積、壓縮-激勵塊和反殘差塊組成)為核心,采用高效的編碼-解碼結(jié)構(gòu)為骨架,將LWIBNet模型分別與傳統(tǒng)模型的耕地提取效果、經(jīng)典FCN模型的輕量性和精確度進行對比,結(jié)果表明,LWIBNet模型比表現(xiàn)最優(yōu)的傳統(tǒng)模型Kappa系數(shù)提高12.0%,比U-Net模型的參數(shù)量、計算量、訓(xùn)練耗時、分割耗時分別降低96.5%、87.1%、78.2%和75%,且LWIBNet的分割精度與經(jīng)典FCN模型相似。

    Abstract:

    It is of great significance for agricultural resources monitoring to accurately extract cultivated land map information from remote sensing images.To improve the defects of traditional models for extracting cultivated land and solve the problem that most FCN model pays more attention to accuracy but ignores the consumption of time and computing resources, a lightweight model for extracting cultivated land map spots was established based on FCN (LWIBNet), and post-processing combined with mathematical morphology algorithm were used to carry out automatic extraction of cultivated land information. LWIBNet drew on the advantages of lightweight convolutional neural network and U-Net model, and it was built with the core of Inv-Bottleneck (composed of deep separable convolution, compression-excitation block and inverse residual block) and the skeleton of efficient coding-decoding structure. Compared LWIBNet with the cultivated land extraction effect of traditional model, and the computational resources and time consumption of classical FCN model.The results showed that LWIBNet was 12.0% higher than the Kappa coefficient of the best traditional model, and compared with U-Net, LWIBNet had 96.5%, 87.1%,78.2% and 75% less parameters, calculation, training time and split time-consuming, respectively. Moreover, the segmentation accuracy of LWIBNet was similar to that of the classical FCN model.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳玲玲,施政,廖凱濤,宋月君,張紅梅.基于卷積神經(jīng)網(wǎng)絡(luò)的高分遙感影像耕地提取研究[J].農(nóng)業(yè)機械學(xué)報,2022,53(9):168-177. CHEN Lingling, SHI Zheng, LIAO Kaitao, SONG Yuejun, ZHANG Hongmei. Cultivated Land Extraction from High Resolution Remote Sensing Image Based on Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):168-177.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼