亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SE-UNet的冬小麥種植區(qū)域提取方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(31971789)和安徽省自然科學基金項目(2008085MF184)


SE-UNet-Based Extraction of Winter Wheat Planting Areas
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    傳統(tǒng)的小麥面積提取方法主要依靠人工野外調查,存在工作量大、效率低、成本高等問題,而遙感技術具有準確、快速和動態(tài)等優(yōu)點,已成為作物面積提取的有效手段。本文以石家莊市正定縣各鎮(zhèn)的Landsat-8衛(wèi)星遙感影像為訓練數據,藁城區(qū)增村鎮(zhèn)影像為測試數據,并分別選取分辨率8m的高分六號(GF-6)以及分辨率10m的哨兵二號(Sentinel-2)作為對比驗證數據,提出了一種改進U-Net網絡的冬小麥種植區(qū)域提取方法。首先,對Landsat-8遙感影像進行預處理,標注小麥區(qū)域制作標簽集,其次,在U-Net網絡中添加Squeeze and excitation(SE)注意力機制模塊融入特征通道間信息,并利用Batch normalization(BN)層抑制過擬合問題;最后,經過Softmax分類器得到分類結果。選擇SegNet、Deeplabv3+、U-Net作為對比模型,分別利用GF-6、Sentinel-2和Landsat-8 3種數據構建預測模型。結果表明,SE-UNet網絡在基于Landsat-8數據預測模型下測試數據集表現最優(yōu),MPA和MIoU分別達到89.88%和81.44%。本方法可為大范圍冬小麥種植區(qū)提取提供參考。

    Abstract:

    The traditional wheat area extraction methods mainly depend on artificial field investigation, which shows some disadvantages such as a big workload, low efficiency and high cost. Conversely, remote sensing technology has the advantages of high accuracy, rapid response and dynamic monitoring. It has become an effective measurement to extract crop areas. The Landsat-8 satellite remote sensing image of Zhengding County in Shijiazhuang was used as the training data, the image of Zengcun Town in Gaocheng District was used as test data. The GF-6 with resolution of 8m and Sentinel-2 with resolution of 10m were selected as comparative validation data. An improved U-Net was proposed to extract winter wheat planting areas. Landsat-8 was firstly preprocessed and the label set of wheat areas were marked and trained by using the U-Net network. The Squeeze and excitation (SE) attention mechanism module was introduced to better consider the information between feature channels, and the Batch normalization (BN) layer was used to suppress the over-fitting problem. The classification results were obtained through the Softmax classifier. SegNet, Deeplabv3+ and U-Net were selected as the comparison models and GF-6, Sentinel-2 and Landsat-8 data were used to construct the models, respectively. The results showed that the SE-UNet network performed best in the test data set based on Landsat-8 data prediction model, with the MPA and MIoU of 89.88% and 81.44%, respectively. This method can provide a reference for identifying large-scale winter wheat planting areas.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙晉陵,詹媛媛,王娟,黃林生.基于SE-UNet的冬小麥種植區(qū)域提取方法[J].農業(yè)機械學報,2022,53(9):189-196. ZHAO Jinling, ZHAN Yuanyuan, WANG Juan, HUANG Linsheng. SE-UNet-Based Extraction of Winter Wheat Planting Areas[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):189-196.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-05-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼