亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于信息融合描述子的機(jī)器人復(fù)雜場景位姿估計(jì)算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61763037)、內(nèi)蒙古自治區(qū)科技計(jì)劃項(xiàng)目(2021GG164)和內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目(2020MS05029、2021MS06018)


Pose Estimation Algorithm for Robot Complex Scenes Based on Information Fusion Descriptor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    傳統(tǒng)機(jī)器人V-SLAM前端定位算法是基于人工設(shè)定的特征點(diǎn)提取和描述子局部匹配進(jìn)行定位的,由于人工設(shè)定的主觀性會(huì)導(dǎo)致提取方法魯棒性差、復(fù)雜場景適應(yīng)能力弱(場景明亮變化、噪聲的引入、運(yùn)動(dòng)模糊)以及局部描述子匹配精度低等問題,為此,提出一種前端定位算法(SuperPoint Brief and K-means visual location, SBK-VL),該算法首先采用一種改進(jìn)的概率p-SuperPoint深度學(xué)習(xí)算法提取特征點(diǎn),以解決特征點(diǎn)魯棒性低、復(fù)雜場景適應(yīng)力弱的問題。其次提出一種全局信息(特征點(diǎn)聚類)和局部信息(Brief描述子)相結(jié)合的復(fù)合描述子,降低傳統(tǒng)描述子誤匹配及匹配精度低的問題,實(shí)驗(yàn)結(jié)果顯示該復(fù)合描述子的平均匹配正確率為92.71%。最后將該SBK-VL替換ORB-SLAM2的前端,引入一種Ransac隨機(jī)抽樣方法對位姿進(jìn)行檢驗(yàn),并使用絕對軌跡誤差、相對軌跡誤差、平均跟蹤時(shí)間與ORB-SLAM2算法和GCNv2-SLAM算法進(jìn)行比較。實(shí)驗(yàn)結(jié)果表明,本文算法具有更好的均衡性能,一方面可提升經(jīng)典V-SLAM算法的復(fù)雜場景適應(yīng)性和估計(jì)精度,另一方面相比傳統(tǒng)深度學(xué)習(xí)SLAM算法具有更好的實(shí)時(shí)性和更低計(jì)算成本。

    Abstract:

    The traditional robot V-SLAM frontend positioning algorithm is based on manually set feature point extraction and descriptor local matching for positioning. Due to the subjectivity of manual setting, the extraction method will have poor robustness and weak adaptability to complex scenes (scene brightness changes, the introduction of noise, motion blur) and the low accuracy of local descriptor matching. For this reason, a front-end positioning algorithm (SuperPoint Brief and K-means visual location, SBK-VL) was proposed. The algorithm firstly used an improved p-probability-SuperPoint deep learning framework extracted feature points to solve the problem of low robustness of feature points and weak adaptability to complex scenes; secondly, a combination of global information (feature point clustering) and local information (Brief descriptor) was proposed. Descriptors can reduce the mismatch of traditional descriptors and improve the problem of low matching accuracy. The experimental results showed that the average matching accuracy rate was 92.71%. Finally, replacing the SBK-VL with the front end of ORB-SLAM2, a Ransac random sampling method was used to test the pose, and the absolute trajectory error index was used. Relative trajectory error index and average tracking time were compared with that of ORB-SLAM2 algorithm and GCNv2-SLAM algorithm. The experimental results showed that the algorithm had better equalization performance. On the one hand, it can improve the complex scene adaptability and estimation accuracy of the classic V-SLAM algorithm. On the other hand, it had better real-time performance and computational cost than the traditional deep learning SLAM algorithm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

齊詠生,姚辰武,劉利強(qiáng),董朝軼,李永亭.基于信息融合描述子的機(jī)器人復(fù)雜場景位姿估計(jì)算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(10):293-305. QI Yongsheng, YAO Chenwu, LIU Liqiang, DONG Chaoyi, LI Yongting. Pose Estimation Algorithm for Robot Complex Scenes Based on Information Fusion Descriptor[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(10):293-305.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-04-19
  • 出版日期:
文章二維碼