亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無(wú)人機(jī)高光譜的荒漠草原地物精簡(jiǎn)學(xué)習(xí)分類模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31660137)


Simplified Learning Classification Model Based on UAV Hyperspectral Remote Sensing for Desert Steppe Terrain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    荒漠草原植被稀疏、裸土細(xì)碎化分布對(duì)遙感數(shù)據(jù)空間分辨率和光譜分辨率的指標(biāo)精度提出更高要求,目前應(yīng)用于遙感場(chǎng)景的深度學(xué)習(xí)模型隱藏層較多、模型結(jié)構(gòu)復(fù)雜,且采用經(jīng)典深度學(xué)習(xí)模型未考慮遙感數(shù)據(jù)內(nèi)在特點(diǎn),導(dǎo)致模型訓(xùn)練普遍存在計(jì)算過(guò)度、耗時(shí)增加等問(wèn)題。本文利用低空無(wú)人機(jī)(Unmanned aerial vehicle,UAV)遙感平臺(tái)搭載高光譜成像光譜儀采集荒漠草原地物高光譜數(shù)據(jù),發(fā)揮高空間分辨率與高光譜分辨率相結(jié)合的優(yōu)勢(shì),并基于三維卷積神經(jīng)網(wǎng)絡(luò)(Three-dimensional convolutional network,3D-CNN)方法提出一種適合荒漠草原地物植被、裸土、標(biāo)記物識(shí)別的精簡(jiǎn)學(xué)習(xí)分類模型,進(jìn)行參數(shù)組合調(diào)優(yōu),在調(diào)整學(xué)習(xí)率、批量規(guī)模、卷積核尺寸及數(shù)量后,最高總體分類精度(Overall accuracy,OA)可達(dá)到99.746%。研究結(jié)果表明,精簡(jiǎn)學(xué)習(xí)分類模型的優(yōu)化建立在超參數(shù)選擇基礎(chǔ)上,為獲得精度高、耗時(shí)短、性能穩(wěn)定的最優(yōu)模型,需不斷調(diào)整超參數(shù)并對(duì)比不同組合分類效果。基于無(wú)人機(jī)高光譜技術(shù)的精簡(jiǎn)學(xué)習(xí)分類模型在荒漠草原地物的分類識(shí)別應(yīng)用中具有較大優(yōu)勢(shì)。

    Abstract:

    Desert steppe with features of sparse vegetation and fragmented bare soil distribution, required for high spatial resolution and spectral resolution of remote sensing data. There were some problems with over calculation and time-consuming according to present situation of deep learning use for remote sensing. Firstly, multiple hidden layers with complex structure were common in remote sensing scenes application. Secondly, inherent characteristics of remote sensing data were lack of consideration when some classical models were applied directly. A low altitude unmanned aerial vehicle (UAV) platform was established with a hyperspectral remote sensing sensor on it, which gave full play to the strengths of spatial and spectral resolutions. A simplified learning classification model were proposed by using three-dimensional convolutional network (3D-CNN) in desert steppe with hyper parameters of learning rate, batch size, number and size of convolutional kernels optimized for the classification of vegetation, bared ground and indicators. The highest overall accuracy (OA) of the model was evaluated to be 99.746% after optimized. The results suggested that the optimization of simplified learning classification model should build on constantly adjusting hyper parameters and sufficiently comparing with classification results of various combinations for higher precision, shorter time-consuming and more reliable stability. These results demonstrated that the simplified learning classification model based on UAV hyperspectral remote sensing had good performance in classifying ground target in desert steppe.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王圓,畢玉革.基于無(wú)人機(jī)高光譜的荒漠草原地物精簡(jiǎn)學(xué)習(xí)分類模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(11):236-243. WANG Yuan, BI Yuge. Simplified Learning Classification Model Based on UAV Hyperspectral Remote Sensing for Desert Steppe Terrain[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(11):236-243.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼