亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無人機遙感的盛花期薇甘菊監(jiān)測技術(shù)
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD1400100、2021YFD1400101)、南寧市重點研發(fā)計劃項目(20192065)、國家自然科學(xué)基金青年科學(xué)基金項目(31801804)、深圳市大鵬新區(qū)科技創(chuàng)新和產(chǎn)業(yè)發(fā)展專項資金項目(PT202001-06)和南京海關(guān)科研項目(2020KJ10)


Monitoring Technology of Mikania micrantha in Flowering Period Based on UAV Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    薇甘菊是世界十大有害雜草之一,其泛濫會對生態(tài)系統(tǒng)造成重大影響。建立一個高空間分辨率全域尺度的薇甘菊預(yù)警評估方法,是防治薇甘菊的關(guān)鍵手段之一。目前對薇甘菊的監(jiān)測主要有人工踏查、衛(wèi)星遙感監(jiān)測,但前者效率低下而后者識別精度不夠。以無人機為載體,通過采集待監(jiān)測區(qū)域的薇甘菊彩色圖像,應(yīng)用Otsu-K-means、RGB、HSV色彩空間閾值分割算法以及K-means-RGB、K-means-HSV、K-means-RGB-HSV融合算法和MobileNetV3深度學(xué)習(xí)算法進行識別,采用召回率、精確率和均衡平均數(shù)F1值共3個評價指標(biāo)對識別結(jié)果進行評價。實驗結(jié)果表明K-means-RGB-HSV算法對盛花期薇甘菊的整體識別效果最佳。在此基礎(chǔ)上,基于識別結(jié)果應(yīng)用模糊層次分析法以及蓋度公式,初步建立了薇甘菊的預(yù)警評估方法,劃分了5個薇甘菊入侵危害等級,可根據(jù)所需監(jiān)測精度的不同,設(shè)置不同尺寸的網(wǎng)格和輻射半徑,繪制出薇甘菊入侵的精準(zhǔn)分布熱力圖,能夠清晰準(zhǔn)確地體現(xiàn)不同區(qū)域的入侵薇甘菊的危害程度。在厘米級分辨率精度下,實現(xiàn)了基于無人機遙感的盛花期薇甘菊精準(zhǔn)監(jiān)測,為薇甘菊入侵的監(jiān)測、預(yù)警和精準(zhǔn)防治提供了有力支撐。

    Abstract:

    Mikania micrantha is one of the top ten harmful weeds in the world, and its flooding will have a great impact on the ecosystem. Establishing a high spatial resolution and global scale early warning and assessment method for Mikania micrantha is one of the key measures to control Mikania micrantha. At present, Mikania micrantha is mainly monitored by manual survey and satellite remote sensing, but the former is inefficient and the latter is not accurate enough. Unmanned aerial vehicle (UAV) was used as the carrier to collect Mikania micrantha color images in the area to be monitored, the Otsu-K-means, RGB, HSV color space threshold segmentation algorithm and K-means-RGB, K-means-HSV, K-means-RGB-HSV fusion algorithm and MobileNetV3 deep learning algorithm were used for recognition. The recognition results were evaluated by three evaluation indexes: recall rate, accuracy rate and average F1-score value. The experimental results showed that K-means-RGB-HSV algorithm had the best overall recognition effect on Mikania micrantha in full bloom. On this basis, based on the recognition results, an early warning evaluation system of Mikania micrantha was constructed by applying fuzzy analytic hierarchy process and coverage formula, and five Mikania micrantha invasion hazard grades were divided. According to the different monitoring accuracies, grids with different sizes and radiation radius were set, and the accurate distribution heat map of Mikania micrantha invasion was drawn, which could clearly and accurately reflect the harm degree of Mikania micrantha invasion in different areas. Accurate monitoring of Mikania micrantha in full bloom based on UAV remote sensing was achieved with centimeter-level resolution accuracy, which provided strong support for monitoring, early warning and accurate prevention of Mikania micrantha invasion.

    參考文獻
    相似文獻
    引證文獻
引用本文

李巖舟,覃鋒,顧渝娟,韓陽春,田洪坤,喬曦.基于無人機遙感的盛花期薇甘菊監(jiān)測技術(shù)[J].農(nóng)業(yè)機械學(xué)報,2022,53(11):244-254. LI Yanzhou, QIN Feng, GU Yujuan, HAN Yangchun, TIAN Hongkun, QIAO Xi. Monitoring Technology of Mikania micrantha in Flowering Period Based on UAV Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(11):244-254.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼