亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進Mask R-CNN的水稻莖稈截面參數(shù)檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31971799)


Automatic Detection of Rice Stem Section Parameters Based on Improved Mask R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對人工測量、統(tǒng)計作物莖稈顯微切片圖像中維管束數(shù)目、面積等關(guān)鍵參數(shù)主觀性強、費時費力、效率低的問題,提出一種基于圖像處理的水稻莖稈截面參數(shù)自動檢測方法。首先構(gòu)建了一個基于改進Mask R-CNN網(wǎng)絡(luò)的水稻莖稈切片圖像分割模型。網(wǎng)絡(luò)以MobilenetV2和殘差特征增強及自適應(yīng)空間融合的特征金字塔網(wǎng)絡(luò)為特征提取網(wǎng)絡(luò),同時引入PointRend增強模塊,并將網(wǎng)絡(luò)回歸損失函數(shù)優(yōu)化為IoU函數(shù),最優(yōu)模型的F1值為91.21%,平均精確率為94.37%,召回率為88.25%,平均交并比為90.80%,單幅圖像平均檢測耗時0.50s,實現(xiàn)了水稻莖稈切片圖像中大、小維管束區(qū)域的定位、檢測和分割;通過邊緣檢測、形態(tài)學(xué)處理及輪廓提取,實現(xiàn)莖稈截面輪廓的分割提取。本文方法可實現(xiàn)對水稻莖稈截面面積、截面直徑,大、小維管束面積,大、小維管束數(shù)量等6個參數(shù)的自動檢測,檢測平均相對誤差不超過4.6%,可用于水稻莖稈微觀結(jié)構(gòu)的高通量觀測。

    Abstract:

    Addressing difficulties in manual measurement and statistics of key parameters like the number and area of vascular bundles in crop stem microsection images such as high subjectivity, large time, labor investment, and low efficiency, an automatic detection method of rice stem cross-section parameters based on image processing was proposed. First of all, an image segmentation model of rice stem slices based on the improved Mask R-CNN was built. The network adopted MobilenetV2 and residual feature enhancement and the adaptive space fusion feature pyramid network as the feature extraction network. In the meantime, the PointRend enhancement module was introduced, and the regression loss function of the network was optimized to IoU function. The F1 value of the optimal model was 91.21%; the average precision rate was 94.37%; the recall rate was 88.25%; the mean intersection over union was 90.80%; and the average detection time of a single image was 0.50s. It achieved localization, detection and segmentation of large and small vascular bundle areas in rice stem slice images. Through edge detection, morphological processing and contour extraction, the stem section contours were segmented and extracted. The method proposed herein realized automatic detection of six parameters, namely rice stem section area, section diameter, large and small vascular bundle area, and the number of large and small vascular bundles. The average relative error of detection was no higher than 4.6%. The method can also be used for high-throughput observation of rice stem microstructure.

    參考文獻
    相似文獻
    引證文獻
引用本文

張高亮,劉兆朋,劉木華,方鵬,陳雄飛,梁學(xué)海.基于改進Mask R-CNN的水稻莖稈截面參數(shù)檢測方法[J].農(nóng)業(yè)機械學(xué)報,2022,53(12):281-289. ZHANG Gaoliang, LIU Zhaopeng, LIU Muhua, FANG Peng, CHEN Xiongfei, LIANG Xuehai. Automatic Detection of Rice Stem Section Parameters Based on Improved Mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(12):281-289.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-07-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-10-07
  • 出版日期:
文章二維碼