亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于嗅覺可視化技術(shù)的花生黃曲霉毒素B1定量檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFC1600603)和江蘇省“六大人才高峰”項目(NY151)


Quantitative Determination of Aflatoxin B1(AFB1) in Peanuts Based on Olfaction Visualization Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    花生在儲運過程中極易受到各種霉菌的污染而產(chǎn)生真菌毒素,其中以黃曲霉毒素B1(AFB1)最為常見。提出了基于嗅覺可視化技術(shù)的花生AFB1定量檢測。利用頂空固相微萃取氣相色譜-質(zhì)譜聯(lián)用技術(shù)(HS-SPEM-GC-MS)分析得到不同霉變花生的指示性揮發(fā)性物質(zhì)成分,據(jù)此選擇12種化學(xué)染料制備特異性強的色敏傳感器陣列,用于采集不同霉變程度花生樣本的氣味信息。引入遺傳算法(GA)結(jié)合反向傳播神經(jīng)網(wǎng)絡(luò)(BPNN)優(yōu)化預(yù)處理后的傳感器特征圖像的顏色分量。借助支持向量回歸(SVR)構(gòu)建基于優(yōu)化特征顏色分量組合的定量模型實現(xiàn)花生AFB1的定量檢測;在此過程中,比較網(wǎng)格搜索(GS)和麻雀搜索算法(SSA)對SVR參數(shù)的優(yōu)化性能。研究結(jié)果顯示:SSA-SVR模型性能整體優(yōu)于GS-SVR模型性能;且基于7個特征顏色分量組合的最佳SSA-SVR模型的預(yù)測相關(guān)系數(shù)(RP)達到0.9142,預(yù)測均方根誤差為5.6832μg/kg,剩余預(yù)測偏差為2.3926。研究結(jié)果表明,利用嗅覺可視化技術(shù)可實現(xiàn)花生AFB1的定量檢測。

    Abstract:

    Peanuts are easily contaminated by various molds during storage and transportation to produce mycotoxins, among which aflatoxin B1(AFB1) is the most common. A novel method for determination of the AFB1 in peanuts based on colorimetric senor technology was proposed. Indicative volatile components of different moldy peanuts were obtained by headspace solid phase microextraction with gas chromatography-mass spectrometry (HS-SPEM-GC-MS). According to the result of the HS-SPEM-GC-MS report, totally 12 kinds of chemical dyes were selected to prepare a color sensitive sensor array with strong specificity, which was used to collect the odor information of peanut samples with different degrees of mildew. Genetic algorithm (GA) combined with back propagation neural network (BPNN) was used to optimize the color component of the preprocessed sensor feature image. Then support vector regression (SVR) was used to construct a quantitative model based on the combination of optimized feature color components to achieve the determination of the AFB1 in peanuts. In this process, the optimization performance of grid search (GS) algorithm and sparrow search algorithm (SSA) on SVR parameter was compared. The results obtained showed that the performance of SSA-SVR model was better than that of GS-SVR model. The correlation coefficients of prediction (RP) of the best SSA-SVR model based on the combination of seven feature color components reached 0.9142. The root mean square error of prediction (RMSEP) was 5.6832μg/kg, and the residual predictive deviation (RPD) value was 2.3926. The overall results demonstrated that it was feasible to use the olfactory visualization technology for the determination of the AFB1 in peanuts. In addition, proper optimization of sensor features and model parameters can further improve the detection performance of the model.

    參考文獻
    相似文獻
    引證文獻
引用本文

江輝,劉良源,陳全勝.基于嗅覺可視化技術(shù)的花生黃曲霉毒素B1定量檢測[J].農(nóng)業(yè)機械學(xué)報,2022,53(12):308-313. JIANG Hui, LIU Liangyuan, CHEN Quansheng. Quantitative Determination of Aflatoxin B1(AFB1) in Peanuts Based on Olfaction Visualization Technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(12):308-313.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-02-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-04-10
  • 出版日期:
文章二維碼