亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于DBSCAN和BP_Adaboost的農(nóng)機(jī)作業(yè)地塊劃分方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計劃項(xiàng)目(2020YFB1709603)


Land Division Method for Agricultural Machinery Operation Based on DBSCAN and BP_Adaboost
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    農(nóng)業(yè)機(jī)械(農(nóng)機(jī))在多個地塊作業(yè),費(fèi)用和效率有時需按地塊統(tǒng)計,現(xiàn)有的農(nóng)機(jī)監(jiān)控系統(tǒng)僅能記錄農(nóng)機(jī)定位信息和作業(yè)狀態(tài)信息,難以實(shí)現(xiàn)地塊的自動精準(zhǔn)劃分。本文通過研究軌跡點(diǎn)屬性特征,分析作業(yè)地塊數(shù)量不確定性和軌跡點(diǎn)分布規(guī)律,采用基于密度聚類方法(Densitybased spatial clustering of applications with noise,DBSCAN)和分類器集成算法(BP_Adaboost)結(jié)合的方法劃分地塊。根據(jù)DBSCAN算法對農(nóng)機(jī)軌跡點(diǎn)多數(shù)有效、識別錯誤集中的特點(diǎn),結(jié)合BP_Adaboost算法挖掘多維度信息關(guān)聯(lián)、容錯能力強(qiáng)、分類效果好等優(yōu)勢,先利用DBSCAN得到初步的軌跡點(diǎn)狀態(tài)類別,再利用BP_Adaboost算法建立訓(xùn)練模型對農(nóng)機(jī)軌跡點(diǎn)狀態(tài)精準(zhǔn)識別,根據(jù)時間序列和類別標(biāo)記劃分地塊。本文方法既解決了只依靠閾值和經(jīng)緯度信息聚類不準(zhǔn)確的問題,也減少了大量樣本標(biāo)記工作。利用該方法軌跡點(diǎn)狀態(tài)識別準(zhǔn)確率達(dá)96.75%,地塊劃分準(zhǔn)確率為97.74%。

    Abstract:

    Agricultural machinery operates in multiple plots, and the cost and efficiency sometimes need to be counted according to the plots. The existing agricultural machinery monitoring system can only record the positioning information and operation status information of agricultural machinery, which is difficult to realize the automatic and accurate division of plots. By studying the attribute characteristics of track points, the uncertainty of the number of work plots and the distribution law of track points were analyzed, and the combination of density clustering method (density-based spatial clustering of applications with noise, DBSCAN) and weak classifier integration algorithm (BP_Adaboost) were used to divide the plots. According to the characteristics that DBSCAN method is effective for most agricultural machinery trajectory points and the recognition error is concentrated, combined with BP_Adaboost method to mine multi-dimensional information association, strong fault tolerance, good classification effect and other advantages. Firstly, DBSCAN was used to obtain the preliminary track point state category, and then the method of BP_Adaboost was used to establish a training model to accurately identify the track point state of agricultural machinery, and divide the land mass according to time series and category markers. The method not only solved the problem of inaccurate clustering only relying on threshold and longitude and latitude information, but also reduced a lot of sample labeling work. Using this method, the accuracy of track point state recognition was 96.75%, and the accuracy of plot division was 97.74%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李亞碩,趙博,王長偉,徐名漢,偉利國,龐在溪.基于DBSCAN和BP_Adaboost的農(nóng)機(jī)作業(yè)地塊劃分方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(1):37-44. LI Yashuo, ZHAO Bo, WANG Changwei, XU Minghan, WEI Liguo, PANG Zaixi. Land Division Method for Agricultural Machinery Operation Based on DBSCAN and BP_Adaboost[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(1):37-44.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-02-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-01-10
  • 出版日期:
文章二維碼