亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于植物電子病歷多類型數(shù)據(jù)融合的作物病害診斷方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(62176261)


Crop Disease Diagnosis Method Based on Fusion of Multiple Types of Data from Plant EMRs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    植物電子病歷(EMR)以結構化和非結構化的形式記錄了大量關于疾病癥狀、環(huán)境特征以及診斷開方的信息,為病害的智能診斷提供了優(yōu)質知識來源,但是其樣本量少、公開數(shù)據(jù)集缺乏和多種類型數(shù)據(jù)并存的特點給相關研究帶來困難。根據(jù)植物EMR多類型數(shù)據(jù)混合的特點,提出了一種基于BERT-MPL數(shù)據(jù)融合與注意力機制優(yōu)化的作物病害診斷模型(BERT-MPL data fusion model based on attention mechanism,BM-Att)。首先采用BERT預訓練語言模型抽取電子病歷中非結構化部分的文本語義特征;其次通過one-hot編碼和多層感知機(MLP)對結構化數(shù)據(jù)進行編碼和向量維度的擴增;最后在特征融合階段采用注意力機制強調關鍵特征,利用多層全連接層實現(xiàn)病害診斷。構建了番茄、黃瓜、生菜和西瓜4種作物的15種病害數(shù)據(jù)集驗證模型的效果并進行消融實驗,并且對比了CNN、RCNN、AttRNN、FastText、Transformer、BERT和ERNIE等處理文本數(shù)據(jù)的常見模型,以及BERT-ALEX、BERT-1dCNN、BERT-1dLSTM、BERT-1dAttLSTM、BERT-MLP、ERNIE-ALEX、ERNIE-1dCNN、ERNIE-1dLSTM、ERNIE-1dAttLSTM、ERNIE-MLP等不同數(shù)據(jù)融合策略。結果表明,BM-Att取得最優(yōu)結果,在測試集的準確率、精確率、召回率和F1值宏平均值分別達到95.82%、96.38%、95.48%和95.85%,能夠實現(xiàn)作物病害的有效診斷。在特征融合階段添加注意力機制的策略將模型F1值宏平均值提高1.47個百分點,顯著提升了模型對生菜霜霉病、西瓜線蟲等小樣本病害的分類效果。該研究可為電子病歷數(shù)據(jù)挖掘及實現(xiàn)智能輔助病害診斷提供參考。

    Abstract:

    The rapid diagnosis of crop diseases is crucial for agricultural production. A large amount of information on disease symptoms, drug prescriptions and environmental characteristics is recorded in the plant electronic medical record (EMR) in both structured and unstructured forms. Plant EMRs can provide a high-quality source of knowledge for intelligent diagnosis of diseases. However, their small sample size, the lack of publicly available datasets and the co-existence of multiple types of data posed difficulties for related research. A crop disease diagnosis model based on BERT-MPL data fusion and attention mechanism (BM-Att) was proposed for the characteristics of multiple types of data mixing in plant EMR. Firstly, BERT pre-trained language model was used to extract text semantic features from the unstructured part of the electronic medical record. Secondly, one-hot coding and multi-layer perceptron (MLP) was used to encode the structured data and augment the vector dimension. Finally, an attention mechanism was used to selectively highlight key features in the feature fusion phase and multiple fully connected layers were used to enable disease diagnosis. To verify the validity of the model, a dataset of 15 diseases of four crops, namely tomato, cucumber, lettuce and watermelon, was constructed and the following experiments were carried out. Ablation experiments were conducted;representative deep learning models for text classification were compared, such as CNN, RCNN, AttRNN, FastText, Transformer, BERT and ERNIE;representative models with different approaches to structured data processing were compared, such as BERT-ALEX, BERT-1dCNN, BERT-1dLSTM, BERT-1dAttLSTM, BERT-MLP, ERNIE-ALEX, ERNIE-1dCNN, ERNIE-1dLSTM, ERNIE-1dAttLSTM, ERNIE-MLP, etc. The results showed that BM-Att achieved optimal results with accuracy, precision, recall and F1-score of 95.82%, 96.38%, 95.48% and 95.85%, respectively in the test set, indicating that effective diagnosis of crop diseases can be achieved. The strategy of adding an attention mechanism to the feature fusion stage improved the F1 macro mean of the model by 1.47 percentage points, significantly improving the model’s classification of small sample diseases such as lettuce downy mildew and watermelon nematode. The research result can provide a reference for data mining of electronic medical records and the implementation of intelligent diagnosis of diseases.

    參考文獻
    相似文獻
    引證文獻
引用本文

丁俊琦,李博,喬巖,張領先.基于植物電子病歷多類型數(shù)據(jù)融合的作物病害診斷方法[J].農業(yè)機械學報,2023,54(1):196-204,223. DING Junqi, LI Bo, QIAO Yan, ZHANG Lingxian. Crop Disease Diagnosis Method Based on Fusion of Multiple Types of Data from Plant EMRs[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(1):196-204,223.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-01-10
  • 出版日期:
文章二維碼