亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于X-ray和RGB圖像融合的實蠅侵染柑橘無損檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2020YFD1000101、2021YFD1400802-4)、財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項目(CARS-26)、柑橘全程機械化科研基地建設(shè)項目(農(nóng)計發(fā)[2017]19號)和湖北省農(nóng)業(yè)科技創(chuàng)新行動項目


Nondestructive Detection of Citrus Infested by Bactrocera dorsalis Based on X-ray and RGB Image Data Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    實蠅侵染柑橘流入市場會造成巨大的經(jīng)濟損失,因此需要在商品化處理階段對其全面篩除。針對柑橘在實蠅侵染早期沒有明顯外部特征,人工抽樣檢測效率低、篩除難的問題,探索了在生產(chǎn)線上同時搭載農(nóng)業(yè)X光機與RGB相機進行無損檢測的可行性,提出了基于X-ray(X光)和RGB圖像的多模態(tài)數(shù)據(jù)融合方法,建立了CNN-LSTM檢測模型,實現(xiàn)了實蠅侵染柑橘高精度無損檢測。模擬了柑橘在生產(chǎn)線上滾動并被拍攝6幅X-ray和RGB序列圖像的過程,構(gòu)建了實蠅侵染柑橘的多源數(shù)據(jù)集,融合了不同模態(tài)的實蠅侵染特征信息,提升了實蠅侵染柑橘檢測模型的檢測能力,并對比了ResNet18-LSTM、GoogleNet-LSTM、SqueezeNet-LSTM、MobileNetV2-LSTM輕量化檢測模型,驗證了多模態(tài)數(shù)據(jù)融合方法的有效性。研究結(jié)果表明,提出的多模態(tài)數(shù)據(jù)融合實蠅侵染柑橘方法比單模態(tài)檢測方法檢測性能更加優(yōu)異,其中ResNet18-LSTM檢測準確率最高,多模態(tài)的圖像融合和特征融合方法檢測準確率分別達到97.3%和95.7%,單模態(tài)X-ray和RGB檢測方法準確率分別為93.2%和89.3%。本研究可為實蠅侵染柑橘在線無損檢測技術(shù)與裝備的研究提供理論支撐。

    Abstract:

    Citrus fruit infested by Bactrocera dorsalis can cause consumer panic and huge economic losses, which makes it important to sort it out during processing. Since there are no obvious characteristics on the fruit surface and manual sorting usually features low efficiency, new techniques for automated sorting are needed. The feasibility of combining an agricultural X-ray machine and an RGB camera on the processing line was explored for non-destructive detection. A multi-modal data fusion method using X-ray and RGB images was firstly proposed, and a CNN-LSTM detection model was then developed which can detect the fruit infested by Bactrocera dorsalis with high precision. The process of the fruit rolling on the processing line was simulated and six X-ray and RGB sequential images were captured respectively, which formed the dataset. The effectiveness of multi-modal data fusion was verified by integrating it into four lightweight detection models, including ResNet18-LSTM, GoogleNet-LSTM, SqueezeNet-LSTM and MobileNetV2-LSTM. Results showed that for each network, the performance using multimodal data fusion outperformed that using unimodal data. ResNet18-LSTM obtained the highest detection accuracy, reaching 97.3% by using multi-modal image fusion and 95.7% by using feature fusion, respectively, and the accuracy based on single-modal X-ray and RGB data was 93.2% and 89.3%, respectively. These results demonstrated the potential to develop an online non-destructive detection system for citrus fruit infested by Bactrocera dorsalis.

    參考文獻
    相似文獻
    引證文獻
引用本文

李善軍,宋竹平,梁千月,孟亮,余勇華,陳耀暉.基于X-ray和RGB圖像融合的實蠅侵染柑橘無損檢測[J].農(nóng)業(yè)機械學報,2023,54(1):385-392. LI Shanjun, SONG Zhuping, LIANG Qianyue, MENG Liang, YU Yonghua, CHEN Yaohui. Nondestructive Detection of Citrus Infested by Bactrocera dorsalis Based on X-ray and RGB Image Data Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(1):385-392.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-01-10
  • 出版日期:
文章二維碼