亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于空間注意力和可變形卷積的無人機田間障礙物檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(32001424、31971798)、深圳市科技計劃項目(JCYJ20210324102401005)、國家重點研發(fā)計劃項目(2022YFD2202103)、浙江省“領雁”研發(fā)攻關計劃項目(2022C02057)和浙江省“三農九方”科技協(xié)作計劃項目(2022SNJF017)


UAV Field Obstacle Detection Based on Spatial Attention and Deformable Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決植保無人機作業(yè)時,傳統(tǒng)田間障礙物識別方法依賴人工提取特征,計算耗時較長,難以實現(xiàn)在非結構化田間環(huán)境下實時作業(yè)識別的問題,提出一種優(yōu)化的Mask R-CNN模型的非結構化農田障礙物實例分割方法。以ResNet-50殘差網絡為基礎,將空間注意力(Spatial attention, SA)引入殘差結構,聚焦跟蹤目標的顯著性表觀特征并主動抑制噪聲等無用特征的影響;引入可變形卷積(Deformable convolution, DCN),通過加入偏移量,增大感受野,提高模型的魯棒性。構建包含農田典型障礙物的數據集,通過對比試驗研究在ResNet殘差網絡結構中的不同階段中加入空間注意力和可變形卷積時的模型性能差異。結果表明,與Mask R-CNN原型網絡相比,在ResNet的階段2、階段3、階段5加入空間注意力和可變形卷積后,改進Mask R-CNN的邊界框(Bbox)和掩膜(Mask)的平均精度均值(mAP)分別從64.5%、56.9%提高到71.3%、62.3%。本文提出的改進Mask R-CNN可以很好地實現(xiàn)農田障礙物檢測,可為植保無人機在非結構化農田環(huán)境下安全高效工作提供技術支撐。

    Abstract:

    In order to solve the problem that the traditional field obstacle recognition methods rely on manual feature extraction, long calculation time, and it's difficult to achieve real-time recognition in unstructured field environment, an optimized unstructured field obstacle instance segmentation method based on Mask R-CNN model was proposed. Firstly, an unstructured field obstacle dataset was constructed by aerial photography and network search. And then based on the ResNet-50 residual network, the spatial attention was introduced to focus on the significant apparent features of the tracking target, and the influence of useless features such as noise was suppressed. In addition, the deformable convolution was introduced into the structure of the ResNet-50 to add the offset, increase the receptive field and improve the robustness of the model. Comparative analysis was made by adding spatial attention and deformable convolution to different stages in the structure of ResNet-50. The results showed that compared with the original Mask R-CNN model, the mAP values of Bbox and Mask in Mask R-CNN improved by adding spatial attention and deformable convolution in Stage 2, Stage 3 and Stage 5 of the ResNet-50 were increased from 64.5% and 56.9% to 71.3% and 62.3%, respectively. The improved Mask R-CNN can well realize field obstacle detection and provide technical support for plant protection UAV to work safely and efficiently in unstructured field environment.

    參考文獻
    相似文獻
    引證文獻
引用本文

杜小強,李卓林,馬锃宏,楊振華,王大帥.基于空間注意力和可變形卷積的無人機田間障礙物檢測[J].農業(yè)機械學報,2023,54(2):275-283. DU Xiaoqiang, LI Zhuolin, MA Zenghong, YANG Zhenhua, WANG Dashuai. UAV Field Obstacle Detection Based on Spatial Attention and Deformable Convolution[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):275-283.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-03-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-06-01
  • 出版日期: