亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于D2-YOLO去模糊識別網(wǎng)絡(luò)的果園障礙物檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(32171908)、江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范推廣項目(NJ2021-14)和江蘇高校優(yōu)勢學(xué)科項目(PAPD)


Orchard Obstacle Detection Based on D2-YOLO Deblurring Recognition Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對果園目標(biāo)檢測時相機(jī)抖動以及物體相對運(yùn)動導(dǎo)致檢測圖像模糊的問題,本文提出一種將DeblurGAN-v2去模糊網(wǎng)絡(luò)和YOLOv5s目標(biāo)檢測網(wǎng)絡(luò)相融合的D2-YOLO一階段去模糊識別深度網(wǎng)絡(luò),用于檢測識別果園模糊場景圖像中的障礙物。為了減少融合網(wǎng)絡(luò)的參數(shù)量并提升檢測速度,首先將YOLOv5s骨干網(wǎng)絡(luò)中的標(biāo)準(zhǔn)卷積替換成深度可分離卷積,并且在輸出預(yù)測端使用CIoU_Loss進(jìn)行邊界框回歸預(yù)測。融合網(wǎng)絡(luò)使用改進(jìn)的CSPDarknet作為骨干網(wǎng)絡(luò)進(jìn)行特征提取,將模糊圖像恢復(fù)原始自然信息后,結(jié)合多尺度特征進(jìn)行模型預(yù)測。為了驗證本文方法的有效性,選取果園中7種常見的障礙物作為目標(biāo)檢測對象,在Pytorch深度學(xué)習(xí)框架上進(jìn)行模型訓(xùn)練和測試。試驗結(jié)果表明,本文提出的D2-YOLO去模糊識別網(wǎng)絡(luò)準(zhǔn)確率和召回率分別為91.33%和89.12%,與分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7個百分點,與YOLOv5s相比分別提升9.54、9.99個百分點,能夠滿足果園機(jī)器人障礙物去模糊識別的準(zhǔn)確性和實時性要求。

    Abstract:

    Aiming at the problem of camera shake and relative motion of objects leading to blurred detection images during target detection in orchards, a D2-YOLO one-stage deblurring recognition deep network that combined the DeblurGAN-v2 deblurring network and the YOLOv5s target detection network was proposed. It was used to detect and identify obstacles in orchard blurred scene images. To reduce the number of parameters of the fusion model and improve the detection speed, firstly the standard convolution used in the YOLOv5s backbone network with a deep separable convolution was replaced, then CIoU_Loss was used as the bounding box regression loss function of prediction. The fusion network used the improved CSPDarknet as the backbone for feature extraction. After recovering the original natural information of the blurred image, it combined multi-scale features for model prediction. To verify the effectiveness of the proposed method, seven common obstacles in the real orchard settings were selected as the target detection objects, based on the chassis of the crawler mobile robot, the BUNKER was equipped with portable computers, cameras and other equipment to form a mobile platform for image acquisition, and the model training and testing were carried out on the Pytorch deep learning framework. The precision and recall rates of the proposed D2-YOLO deblurring detection network were 91.33% and 89.12%, respectively, which were 1.36 percentage points and 2.7 percentage points higher than that of the step-by-step training DeblurGAN-v2+YOLOv5s. Compared with YOLOv5s, there was an increase of 9.54 percentage points and 9.99 percentage points in precision and recall rates, which can meet the accuracy and realtime requirements of orchard robot obstacle deblurring recognition. The research result can provide a reference for obstacle detection of agricultural robots in orchard in the later stage.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

蔡舒平,潘文浩,劉慧,曾瀟,孫仲鳴.基于D2-YOLO去模糊識別網(wǎng)絡(luò)的果園障礙物檢測[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(2):284-292. CAI Shuping, PAN Wenhao, LIU Hui, ZENG Xiao, SUN Zhongming. Orchard Obstacle Detection Based on D2-YOLO Deblurring Recognition Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):284-292.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-04-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-18
  • 出版日期: