亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLOX的復(fù)雜背景下木薯葉病害檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(62162003)、廣西重點(diǎn)研發(fā)計劃項目(桂科AB19110050)和南寧市科技重大專項(20211005)


Detection of Cassava Leaf Diseases under Complicated Background Based on YOLOX
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決田間環(huán)境下由于葉片間遮蓋和堆疊等因素引起的木薯葉病害識別困難的問題,本文提出一種基于改進(jìn)YOLOX網(wǎng)絡(luò)的木薯葉病害檢測(Cassava leaf disease detection,CDD)模型。首先,對復(fù)雜背景下木薯葉病害圖像數(shù)據(jù)集進(jìn)行數(shù)據(jù)增強(qiáng),以減少環(huán)境影響造成的識別困難。其次,在YOLOX網(wǎng)絡(luò)的基礎(chǔ)上,使用多尺度特征提取模塊加強(qiáng)細(xì)粒度特征提取并降低模型計算量,同時嵌入通道注意力機(jī)制,提高網(wǎng)絡(luò)的表征能力。最后,結(jié)合質(zhì)量焦點(diǎn)損失函數(shù)作為分類損失函數(shù)輔助網(wǎng)絡(luò)收斂,提高目標(biāo)分類的準(zhǔn)確性。實(shí)驗(yàn)結(jié)果表明,提出的CDD模型對復(fù)雜背景下木薯葉病害進(jìn)行檢測,網(wǎng)絡(luò)參數(shù)量為5.04×106,平均精度均值達(dá)93.53%,比基礎(chǔ)模型高6.02個百分點(diǎn),綜合檢測能力優(yōu)于多種主流模型。因此,本文提出的CDD模型對田間木薯葉病害具有更快更準(zhǔn)確的檢測能力,為實(shí)現(xiàn)農(nóng)作物病害檢測提供了可借鑒的方法。

    Abstract:

    The present method has some difficulties in recognizing cassava leaf diseases in a field environment, such as covering and stacking between leaves. Based on the YOLOX network, cassava leaf disease detection (CDD) model was proposed. Firstly, the cassava leaf disease image data under complex background was augmented to reduce the recognition difficulty caused by environmental impact. Secondly, built on the YOLOX network, the lightweight multi-scale feature extraction (LME) module was used to strengthen fine-grained feature extraction and reduce the amount of model calculation. At the same time, the channel attention mechanism was embedded to improve the representation ability of the network. Finally, the quality focal loss was used as a part of the classification loss to assist the network convergence and improve the accuracy of target classification. In conclusion, the proposed CDD model can detect cassava leaf disease under complex background. The amount of network parameters was 5.04×106 and the mean average precision was 93.53%, which was 6.02 percentage points higher than that of the non-optimized network model. Comprehensive detection ability was better than that of previous models. Therefore, the proposed method CDD had faster and more accurate detection ability for cassava leaf diseases in the field, and provided a reference method for realizing intelligent field detection.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

宋玲,曹勉,胡小春,賈沛沅,陳燕,陳寧江.基于YOLOX的復(fù)雜背景下木薯葉病害檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(3):301-307. SONG Ling, CAO Mian, HU Xiaochun, JIA Peiyuan, CHEN Yan, CHEN Ningjiang. Detection of Cassava Leaf Diseases under Complicated Background Based on YOLOX[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):301-307.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-04-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-10
  • 出版日期: