亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于特征優(yōu)選與機(jī)器學(xué)習(xí)的農(nóng)田土壤含鹽量估算研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51979233)和陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022NY-220、2022KW-47)


Estimation of Farmland Soil Salinity Content Based on Feature Optimization and Machine Learning Algorithms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    土壤鹽漬化是影響農(nóng)業(yè)可持續(xù)發(fā)展的重要制約因素,為準(zhǔn)確及時(shí)地獲取土壤中鹽分含量,實(shí)現(xiàn)鹽漬化精準(zhǔn)監(jiān)測(cè),以?xún)?nèi)蒙古自治區(qū)巴彥淖爾市五原縣境內(nèi)的覆被農(nóng)田為研究對(duì)象,探討無(wú)人機(jī)多光譜遙感平臺(tái)結(jié)合機(jī)器學(xué)習(xí)模型估測(cè)不同深度土壤含鹽量的可行性。首先,利用無(wú)人機(jī)搭載五波段多光譜相機(jī)獲取研究區(qū)域高時(shí)空分辨率遙感圖像數(shù)據(jù),并同步采集地面不同深度處土壤鹽分?jǐn)?shù)據(jù),使用皮爾遜相關(guān)系數(shù)法(PCC)、極端梯度提升(XGBoost)和灰色關(guān)聯(lián)分析法(GRA)對(duì)構(gòu)建的光譜指數(shù)進(jìn)行優(yōu)選;然后,采用決策樹(shù)(DT)、反向傳播神經(jīng)網(wǎng)絡(luò)(BPNN)、支持向量機(jī)(SVM)和隨機(jī)森林(RF)4種機(jī)器學(xué)習(xí)方法建立植被覆蓋下不同深度的農(nóng)田土壤含鹽量反演模型。結(jié)果表明,使用方案3(XGBoost-GRA)變量?jī)?yōu)選方法可以有效地篩選出敏感光譜指數(shù),且基于此方法優(yōu)選后的光譜指數(shù)建立含鹽量估算模型的精度高于僅使用PCC或XGBoost法構(gòu)建的反演模型。對(duì)比不同建模方法在不同土壤深度處的反演精度,可知隨機(jī)森林RF模型整體表現(xiàn)最優(yōu),同時(shí)另外3種反演模型也取得了較好的預(yù)測(cè)效果,0~20cm土壤深度處的預(yù)測(cè)效果是3個(gè)土壤深度中最優(yōu)的,其中精度最高模型的決定系數(shù)R2、均方根誤差(RMSE)和四分位數(shù)間距性能比(RPIQ)分別為0.820、0.044%和2.273,且本文基于最佳反演模型繪制的0~20cm土壤鹽分空間分布圖可以較為真實(shí)地反映研究區(qū)內(nèi)的土壤鹽漬化程度。本研究表明特征變量?jī)?yōu)選結(jié)合機(jī)器學(xué)習(xí)模型能夠較好地基于無(wú)人機(jī)遙感平臺(tái)來(lái)估算覆被農(nóng)田的土壤含鹽量。

    Abstract:

    Soil salinization is one of the important factors affecting agricultural sustainable development, to get the accurate and timely soil salinity content, and realize precision monitoring of salinization, taking covered fields in the territory of Wuyuan County, Bayinnaoer City in Inner Mongolia Autonomous Region as the research object, exploring UAV multispectral remote sensing platform combined with machine learning model to estimate the feasibility of different depths soil salinity. Firstly, UAV equipped with five-band multi-spectral camera was used to acquire high spatio-temporal resolution remote sensing image data, and soil salinity data at different depths of the ground were collected synchronously. Pearson correlation coefficient method (PCC), extreme gradient boosting (XGBoost) and gray correlation analysis (GRA) were used to optimize the spectral index. Then decision tree (DT), back propagation neural network (BPNN), support vector machine (SVM) and random forest (RF) machine learning methods were used to establish inversion models of soil salinity in farmland with different depths under vegetation coverage. The results showed that scheme 3 (XGBoost-GRA) variable optimization method can effectively screen out the sensitive spectral index, and the accuracy of the optimized spectral index based on this method was higher than that of the inversion model constructed by using only PCC or XGBoost method. By comparing the performance of different modeling methods at different soil depths, it can be seen that the RF model of random forest had the best overall performance, and the other three inversion models had also achieved better prediction effect. The prediction effect of 0~20cm soil depth was the best among the three soil depths. Among them, the determination coefficient R2, root mean square error (RMSE) and ratio of performance to inter-quartile distance (RPIQ) of the model with the highest accuracy were 0.820, 0.044% and 2.273, respectively. Moreover, the spatial distribution map of 0~20cm soil salinity drawn based on the best inversion model could reflect the degree of soil salinization. The research result showed that the combination of feature variable optimization and machine learning model can better estimate the soil salt content based on the UAV remote sensing platform.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

韓文霆,崔家偉,崔欣,馬偉童,李廣.基于特征優(yōu)選與機(jī)器學(xué)習(xí)的農(nóng)田土壤含鹽量估算研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(3):328-337. HAN Wenting, CUI Jiawei, CUI Xin, MA Weitong, LI Guang. Estimation of Farmland Soil Salinity Content Based on Feature Optimization and Machine Learning Algorithms[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):328-337.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-05-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-10
  • 出版日期: